HonCode

Go Back   HER2 Support Group Forums > Inflammatory Breast Cancer
Register Gallery FAQ Members List Calendar Today's Posts

Reply
 
Thread Tools Display Modes
Old 11-03-2007, 02:37 AM   #1
sarah
Senior Member
 
Join Date: Sep 2005
Location: france
Posts: 1,648
what drugs?

What drugs did they use? and are they available or not?
here's the quote from the article:
"In patients who received these drugs, the harmful 'plug' proteins had disappeared from the cancer cells."
sarah is offline   Reply With Quote
Old 11-10-2007, 03:15 PM   #2
gdpawel
Senior Member
 
gdpawel's Avatar
 
Join Date: Aug 2006
Location: Pennsylvania
Posts: 1,080
Chasing Mets (metastasis)

On most cancer message/discussion boards, one of the most common themes is that of "chasing mets" (metatasis). Cancer patients are chasing mets because of the wrong type of chemotherapeutic regimens for their type of cancer histology. But why do patients with histologically similar tumors respond differently to so-called "standard" drug treatments? That is one of the main problems associated with chemotherapy. Patient tumors with the same histology do not necessarily respond identically to the same agent or dose schedule of multiple agents.

Medical oncologists select a drug and must wait to see whether it is effective on a particular patient. Conventionally, oncologists rely on clinical trials in choosing chemotherapy regimens. But the statistical results of these population-based studies might not apply to an individual. And when patients develop metastatic cancer, it is often difficult to select an effective treatment because the tumor develops resistance to many drugs. For many cancers, especially after a relapse, more than one standard treatment exists.

A chemoresponse assay is a diagnostic test (not a treatment) to help measure the "efficacy" of cancer drugs. They cannot make the cancer drugs do better, it can only measure the "best" probability of successful drugs. This is in stark contrast to "standard" or "empiric" therapy (also called physician's choice therapy), in which chemotherapy for a specific patient is based on results from prior clinical studies.

Laboratory screening of samples from a patient's tumor (if available) can help select the appropriate treatment to administer, avoiding ineffective drugs and sparing patients the side effects normally associated with these agents. It can provide predictive information to help physicians choose between chemotherapy drugs, eliminate potentially ineffective drugs from treatment regimens and assist in the formulation of an optimal therapy choice for each patient. This can spare the patient from unnecessary toxicity associated with ineffective treatment and offers a better chance of tumor response resulting in progression-free and overall survival.

It would be highly desirable to know what drugs are effective against particular cancer cells before cytotoxic agents are systemcially administered into the body. Chemresponse assays are clinically validated drug tests on living (fresh) specimens of cancer cells to determine the optimal combination of chemotherapy drugs. These assays are specifically tailored for each individual patient based on tumor tissue profiling, with no economic ties to outside healthcare organizations, and recommendations are made without financial or scientific prejudice.

Recommendations are designed scientifically for each individual patient. Various assays are performed on a tumor sample to measure drug activity (sensitivity and resistance). This will determine not only what drug or combinations of drugs will not effectively work, but which will be most effective for an "individual's" cancer. Then a treatment recommendation is developed through what is known as "assay-directed" therapy.

2nd, 3rd, even 4th line therapies (why?)

I often read on the discussion boards about oncologists telling patients "if this drug doesn't work, we'll try this drug." And "if that drug doesn't work, we'll try this drug." In patients who have failed two, three or even four chemo drugs, why not give them the "right" drug or combinations the "first" time around?

In academic centers, patients are entered into clinical trials of square peg in a round hole therapy. This encourages the patient to receive 2nd, 3rd, and 4th line chemotherapy, regardless of the likelihood of meaningful benefit. The therapies are equivalent on a "population" basis, but not on an "individual" basis.

They continue to try and mate a notoriously heterogeneous disease into "one-size-fits-all" treatments. They predominately devote their clinical trial resources into trying to identify the best treatment for the "average" patient, in the face of evidence that this approach is non-productive.

According to NCI's official cancer information website on "state of the art" chemotherapy in recurrent or metastatic cancer, no data support the superiority of any particular regimen. There is no proven "standard" first line therapy which has been shown to be superior to the many other choices which exist.

The same situation exists in the setting of 2nd, 3rd, and 4th line therapy. Proven by the large number of patients who have progressive disease on 1st line therapy but who have good responses to 2nd or 3rd line therapy.

So it would appear that published reports of clinical trials provide precious little in the way of guidance. These patients patients should have received the "correct" treatment in the first line setting. This can be accomplished by individualizing cancer treatment based on testing the cancer biology.

Last edited by gdpawel; 01-18-2009 at 02:46 PM.. Reason: additional info
gdpawel is offline   Reply With Quote
Old 12-26-2007, 09:55 AM   #3
sarah
Senior Member
 
Join Date: Sep 2005
Location: france
Posts: 1,648
thanks
sarah
sarah is offline   Reply With Quote
Old 12-28-2007, 11:25 AM   #4
Lani
Senior Member
 
Join Date: Mar 2006
Posts: 4,778
I haven't read that article in full yet

but growth factor receptors is a generic term that can include her2

Usually if they are referring to EGFR aka her1 they specify that rather than referring to the more general term "growth factor receptors" of which there are many
Lani is offline   Reply With Quote
Old 12-28-2007, 12:21 PM   #5
gdpawel
Senior Member
 
gdpawel's Avatar
 
Join Date: Aug 2006
Location: Pennsylvania
Posts: 1,080
VEGF secreted by the tumor cells.

Endothelial growth factor (EGF) is an important activator of angiogenesis. EGF causes endothelial cells to grow. Research has shown that oncogenes (genes that help cancer cells grow), cytokines (substances produced by the immune system), and hypoxia (a low-oxygen environment, which is common in tissues around solid tumors) can all directly or indirectly activate EGF, thereby starting angiogenesis.

EGF causes angiogenesis by attaching to special receptors (proteins on the outside of cancer cells that act like doorways), and this action starts a series of chemical reactions inside the cell. Because EGF is so important to angiogenesis, it is a target of new cancer treatments. For example, the drug bevacizumab (Avastin) blocks a receptor for EGF.

In addition to EGF, researchers have identified a dozen other activators of angiogenesis, some of which are similar to EGF, VEGF being one of them. Endostatin is a protein that talc stimulates healthy cells to produce after placed into the chest cavity during thoracoscopy, to inhibit the growth of tumors by cutting the flow of blood to metastatic lung tumors.

Avastin can be tested with a EGFR biomarker assay because the "target" of Avastin is not the cells themselves, but rather the hormone (VEGF) secreted by the tumor cells. Avastin complexes with free VEGF and blocks its action.

At a critical point in the growth of a tumor, the tumor sends out signals to the nearby endothelial cells to activate new blood vessel growth. Two endothelial growth factors, VEGF and basic fibroblast growth factor (bFGF), are expressed by many tumors and seem to be important in sustaining tumor growth.

Avastin is a monoclonal antibody, a type of genetically engineered protein. Monoclonal antibodies are substances made in the laboratory that recognize and then attach to specific proteins on the outside of cancer cells. They may be used to stimulate the immune system to attack cancer cells or to deliver radiation, chemotherapy, or other biologic therapies more directly to a tumor.

Avastin directly binds to the protein VEGF, which spurs the growth of blood vessels. Angiogenesis is dependent on VEGF. Avastin directly binds to VEGF to directly inhibit angiogenesis (microvasculature regression). Within 24 hours of VEGF inhibition, endothelial cells have been shown to shrivel, retract, fragment and die by apoptosis. VEGF can cut off the supply of vessels that spring up to feed a tumor, but there is some uncertainty how Avastin works, or if it can get "inside" a cell.

And here's another possible indication. Scientists from the University of Innsbruck, Austria determined (via immunohistochemical staining for VEGF) that patients with Carcinomatous Meningitis (Leptomeningeal Carcinomatous) from breast cancer, significant amounts of VEGF are released into the cerebrospinal fluid (CSF). VEGF in CSF may be a useful biologic marker not only for the diagnosis but also the evaluation of treatment response in Carcinomatous Meningitis.

With respect to the metastasis, it is literally a cancer that has moved. It may have mutated further (cancer is itself a mutation that occurs within a cell that was intended to look and function as a normal cell but somewhere along the line the genetic "wiring" got crossed and instead of simply dying as it should have done, it divided and produced offspring cells that shared the same mutation as the original parent cell) in some respects - often it becomes more resistant to therapy than the primary (original) tumor - but fundamentally, it remains the same tumor-type.

In other words, a rectal cancer in the lung remains rectal cancer. The cell has identifiable characteristics which usually allow the pathologist to determine its point of origin. In fact, sometimes in cancer, a primary tumor never is located but the metastatic cells can be identified as having come from a specific organ system because of the way they look and because they express certain molecules which can be identified chemically.

Therefore, the treatment for a breast cancer, for example, that has metastasized to a different part of the body generally is treated in a similar manner as if the tumor cells all were contained within the region of the breast.

However, from the viewpoint of assay-directed therapy, none of that matters because it doesn't necessarily treat all breast cancers with "the" breast cancer protocol or all rectal cancers with "the" rectal cancer protocol (even if there were only one - in fact, there are several protocols to choose from).

Instead, the whole point of functional tumor cell profiling is to determine, individually - that is, for each patient - precisely which drug or drugs is best able to kill that patient's own cancer cells - no matter which drug that happens to be and no matter what type of cancer it is.

If you visit the National Cancer Institute website, you'll see that for virtually all cancers, there is no single "best" regimen listed. Instead, you'll find that, for each cancer type, many drugs and drug combinations have been proven in clinical trails to produce about the same result among large groups of unselected patients.

However, looking at the individual patients within a clinical trial, all of whom have the same type and stage of cancer, some patients do not respond at all to a specific treatment while others respond very well and, even in some of the very difficult cancer types, some patients achieve long-term remissions and even cures.

What this suggests is, considering that there are many drug regimens which are equally-accepted by the NCI and by oncologists, these drugs regimens should not be administered blindly but rather each patient's cancer cells should be tested to determine which of the otherwise equally-acceptable drug regimen has the very best chance of benefiting that particular patient.
gdpawel is offline   Reply With Quote
Old 01-03-2008, 06:06 PM   #6
Lolly
Senior Member
 
Lolly's Avatar
 
Join Date: Aug 2001
Location: Oregon
Posts: 1,756
Thanks so much for this info.
__________________
Sept.'99 - Dx.Stage IIIB, IDC ER/PR-, HER2+++ by IHC, confirmed '04 by FISH. Left MRM, AC x's 4, Taxol x's 4, 33 Rads, finishing Tx May 2000. Jan.'01 - local/regional recurrence, Stage IV. Herceptin/Navelbine weekly till NED August 2001, then maintenance Herceptin. Right Mast. April 2002. Local/Regional recurrence April '04, Herceptin plus/minus chemo until May '07. Gemzar added from Feb.'07-April '07; Tykerb/Abraxane until August '07, back on Herceptin plus Taxotere and Xeloda Sept. '07. Stopped T/X Nov. '07, stopped Herceptin Dec. '07, started Avastin/Taxol/Carboplatin Dec. '07. Progression in chest skin, stopped TAC March '03, started radiation.

Herceptin has served as the "Backbone" of my treatment strategy for over 6 years, giving me great quality of life. In 2005, I was privileged to participate in the University of Washington/Seattle HER2 Vaccine Trial.
Lolly is offline   Reply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On

Forum Jump


All times are GMT -7. The time now is 08:23 PM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Copyright HER2 Support Group 2007 - 2021
free webpage hit counter