PDA

View Full Version : Evidence supporting unifying theory of how cancer progresses may show how to cure it


Lani
05-10-2015, 11:26 AM
A DEVELOPING EMBRYO HAS TO RECRUIT ENOUGH NUTRITION FROM THE MOTHER'S/PLACENTA'S BLOOD SUPPLY AND HAS TO EVADE HER IMMUNE SYSTEM SO THE EMBRYO IS NOT RECOGNIZED AS FOREIGN (HAVING DIFFERENT DNA THAN IT'S MOTHER) AND ATTACKED/DESTROYED

a tumor has similar needs and utilizes similar tools

if the lingo scares you, remember to substitute ice cream, whipped cream, chocolate sauce and cherries!




Office of External Affairs

Phone: (646) 317-7401
Email: pr@med.cornell.edu
Address: Weill Cornell Office of External Affairs
1300 York Ave.
Box 314
New York, NY 10065

Weill Cornell Newsroom > News From Weill Cornell
Uncovering New Functions of a Gene Implicated in Cancer Growth Opens New Therapeutic Possibilities

Weill Cornell Medical College researchers have shown for the first time that a gene previously implicated in blood vessel formation during embryonic development and tumor growth also induces immune suppression during tumor development. This finding, published April 29 in Nature Communications, opens the door for new therapeutic approaches and vaccine development in treating patients with melanoma and other advanced-staged cancers.



Two decades ago, researchers discovered that a gene called Inhibitor of Differentiation 1 (Id1), which is normally found in the embryo, was also present in cancer patients and contributing to tumor progression. The present study reveals another way that Id1 works, hijacking a normal pathway in immune cell development and interfering with the entire immune system, starting in the bone marrow. Without competent immune cells, the body can't fight off tumors, and instead, cancer is allowed to grow, spread and thrive.

"Targeting Id1 offers the potential to restore overall immune function," said senior author Dr. David Lyden, the Stavros S. Niarchos Professor in Pediatric Cardiology and a professor of pediatrics in the Department of Pediatrics at Weill Cornell Medical College. "When the immune system is functioning, treatment options are more plentiful. Given the increased incidence and death rates tied to advanced stage metastatic cancers, there is also an increased urgency to understand how pro-metastatic, immunosuppressive mechanisms, like those driven by Id1, work."

In the research, funded by the Children's Cancer and Blood Foundation, the investigators discovered that a tumor-secreted protein called transforming growth factor beta (ΤGFβ) promotes the activation of Id1. The gene then sets off a chain reaction that redirects immune cells down a new pathway that churns out immature suppressor cells, extinguishing the immune system's ability to mount an effective defense and allowing cancer to grow and spread unabated.

"Normally, the bone marrow produces, among other immune cell types, dendritic cells, which are capable of stopping the spread and growth of tumors," said first author Dr. Marianna Papaspyridonos, who was a Fulbright Cancer Research Fellow at Cornell University in Dr. Lyden's lab. "But when TGFβ is released by the tumor and Id1 is upregulated, the normal generation of dendritic cells is interrupted, and instead another subset of immune cells, which suppresses the immune system, is formed."

Those immune cells, called myeloid-derived suppressor cells, allow cancer to more readily grow and spread. The researchers validated this finding in advanced melanoma patients, who have increased TGFβ plasma levels and higher levels of Id1 in myeloid peripheral blood cells.

Targeting Id1 might provide a three-pronged therapeutic approach, which would first reduce the metastatic potential of the tumor itself, then reduce the tumor's ability to form new blood vessels, a process called vasculogenesis, and finally restore the patient's systemic immune function.

"With this approach, immune cells will recognize a tumor as foreign and attack it," said Dr. Lyden, who also has appointments in the Sandra and Edward Meyer Cancer Center and the Gale and Ira Drukier Institute for Children's Health at Weill Cornell. "This will improve vaccine development, lead to better treatment outcomes and ultimately benefit cancer patients."

Posted April 29, 2015 12:34 PM | Permalink to this post

thinkpositive
05-11-2015, 10:06 AM
Lani,

Can you explain the "remember to substitute ice cream, whipped cream, chocolate sauce and cherries!"? I don't understand what that comment has to do with the article.

Thanks
Brenda

Lani
05-11-2015, 12:40 PM
many do not have a strong background in science and are intimidated by the long words and abbreviations

years ago I WROTE a guide to reading the articles, among other suggestings was to substitute short words for things you like for her2, egfr, igfr1 etc such as in this quote from an earlier post...

"remember the chocolate, marshmellows, cherries and whipped cream method of reading these articles.

ie substitute chocolate for her2, marshmellows for EGFR, cherries for her3 and let whipped cream be anything else you want ie, PI3K, IGFR1 etc.

Just don't get scared of reading the article.

You can do it."

here one can pick oneS' culinary choice to stand for ID1, TGFBETA, DENDRITIC CELLS, IMMUNE SUPPRESSOR CELLS, ETC

JUST TRYING TO MAKE IT EASIER TO TACKLE THESE THING...

Lani
05-11-2015, 12:43 PM
Most recently i used a cotton candy filled moat analogy...

Haven't had breakfast or lunch yet.... Better get going and catch up before the analogies get out of hand

thinkpositive
05-12-2015, 08:05 AM
Lani,

All these analogies are making me want sweets! Thanks for explaining. I'd love to read the article you wrote if you have it handy. Hope you got around to eating lunch :)

Brenda

Mtngrl
05-16-2015, 03:11 PM
This is an exciting development! Thanks for posting it, Lani!