PDA

View Full Version : Anyone tried Melatonin to increase platelet count?


heblaj01
08-29-2006, 08:27 AM
From readings, among the many possible effects of supplementation with Melatonin I noticed the mention that in some cases it can help increase platelet count. If true,this might be helpfull in somewhat counteracting one of the major side effects of many aggressive chemos.
I would like to know if anyone has tried it & with what results in blood tests & QOL (fatigue).

tousled1
08-29-2006, 12:07 PM
I am only aware of using Melatonin as a sleep aid.

heblaj01
08-29-2006, 06:33 PM
Kate,

Here is an extract of a long article at the Mayo Clinic web site on melatonin limited to its potential effect on platelet count:

http://64.233.167.104/search?q=cache:t2nrI_CsEb0J:www.mayoclinic.com/health/melatonin/NS_patient-melatonin+mayo+platelet+melatonin&hl=en&ct=clnk&cd=1

Thrombocytopenia (low platelets)

Increased platelet counts after melatonin use have been observed in patients with decreased platelets due to cancer therapies (several studies reported by the same author) (115; 113; 120; 121; 122; 130; 131). Stimulation of platelet production (thrombopoeisis) has been suggested but not clearly demonstrated. Additional research is necessary in this area before a clear conclusion can be drawn. Cases of idiopathic thrombocytopenic purpura (ITP) treated with melatonin have been reported (244; 245).

You can get to the listed bibliographic references at the end of the full article which appears exhaustive in reporting the various functions of melatonin & the validity of the research results.

Lolly
08-29-2006, 08:31 PM
I've been using melatonin for years as a sleep aid. I looked at my CBC reports for this spring/summer while on Navelbine/Herceptin and now Xeloda/Herceptin, and I can report that my platelet counts have remained in the high normal range. Don't know if this is related to melatonin use. I'm also on low-dose aspirin therapy to keep fibrin sheaths from developing around my port catheter and my platelet counts don't seem to suffer from this.
I'd be careful about self-dosing with melatonin or any supplement while on chemo; I always check with my onc before adding anything new.

<3 Lolly

heblaj01
08-29-2006, 11:33 PM
Lolly,

There is an other symptom besides higher platelet count to guess if melatonin is active: some women taking 20 to 30mg per day have observed increased growth & darkening of hair (if grey in the first place) .
These large doses may be necessary since it has been shown that on the one hand exogenous administration tends to reduce endogenous secretion & on the other hand bioavailibility is said to be only 15% of oral intake.

Carol.hope
08-31-2006, 06:09 PM
My Naturopath had me start on 20 mg Melatonin at bedtime as soon as I got cancer dx. I'm still on it a year later and she says to stay on it. Right now (because of chemo-brain) I can't remember exactly why, but it's to fight cancer, I remember that. I still have fatigue, and it doesn't put me to sleep (I take Ambien, too). Good luck! - Carol

R.B.
09-01-2006, 01:57 AM
What doses do people take?

When?

With what?

Does it always help with sleep?

Any side effects feeling sleepy in the morning?




Fatigue - please see posts on omega three and six - see articles of interest suggestion of link between fatigue and inflamation.



RB

heblaj01
09-01-2006, 08:10 AM
Thanks to Kate,Carol, Lolly,RB for responding to my querry. I hope more members will report their experience, good,bad or neutral with melatonin.

In the case of Carol, your ND practioner may have prescribed you melatonin for cancer based on some of the studies listed below especially the phase 2 trial shown in Table 2.
As far as increasing platelet count (which is my main interest in this thread) I have seen small studies reporting positive results & others showing no results. That is why it would be interesting in hearing from actual anecdotic cases.

http://www.lef.org/protocols/prtcls-txt/t-prtcl-027.html
extract:
Melatonin--is an immune modulator that increases the survival time of most cancer patients
Some cancer patients are now taking melatonin, an immune-modulating neurohormone, as part of a comprehensive, nontoxic cancer treatment. The cone-shaped pineal body, a small but crucial gland located in the brain, produces melatonin, a hormone that influences sexual maturation but also appears to play an important role in cancer.
Melatonin supplementation appears to restore circadian rhythms, which diminish or disappear with age. When melatonin's circadian rhythm is abolished, the aging process is accelerated, life span is shortened, and an increase in spontaneous tumors occurs (Maestroni 1999). It has been shown that when the defense system is compromised due to disrupted rhythms, tumors grow two to three times faster (Filipski et al. 2002).

Melatonin also protects and restores normal blood-cell production caused by the toxicity of conventional treatments; a profile shared with the FDA-approved drugs Neupogen, a granulocyte colony-stimulating factor (G-CSF), and Leukine, a granulocyte-macrophage colony-stimulating factor (GM-CSF). A combination of melatonin and low-dose interleukin 2 (IL-2) neutralizes treatment-induced lymphocytopenia, a decrease in the numbers of lymphocytes in the peripheral circulation of cancer patients (Lissoni et al. 1993).

Researchers found the best way to amplify the antitumoral activity of low dose IL-2 is by not coadministering another cytokine but rather cosupplementing with the immune-modulating neurohormone melatonin (Lissoni et al. 1994a). This is hopeful news for a subset of cancer patients, because melatonin has been shown to cause tumor regression in neoplasms nonresponsive to IL-2 (Maestroni 1999).

The Division of Radiation Oncology of the San Gerardo Hospital (Milan) developed the following protocol for 80 patients with advanced metastatic tumors (Lissoni et al. 1994a). The patients were randomized to receive 3 million IU of IL-2, 6 days a week, for 4 weeks or IL-2 plus 40 mg a day of melatonin. A complete response was achieved in 3 of 41 patients treated with IL-2 plus melatonin and in none of the patients receiving only IL-2. A partial response occurred in 8 of 41 patients treated with IL-2 plus melatonin and in 1 of 39 patients treated with IL-2. Tumor regression rate was significantly higher in patients using IL-2 and melatonin compared to those receiving IL-2 (11/41 versus 1/39). The survival rate at 1 year was higher in patients treated with IL-2 and melatonin than in the IL-2 group (19/41 versus 6/39). Lymphocytic populations were consistently higher when melatonin accompanied the treatment and thrombocytopenia (a decrease in the number of circulating platelets) occurred less frequently.

For patients with bloodborne cancers, an IL-2/melatonin combination is also promising. Twelve patients (nonresponsive to standard therapies) evaluated the efficacy and tolerability of a combination of low-dose IL-2 plus melatonin in advanced malignancies of the blood, including non-Hodgkin's lymphoma, Hodgkin's disease, acute myelogenous leukemia, multiple myeloma, and chronic myelomonocytic leukemia. IL-2 was given 6 days a week for 4 weeks, along with oral melatonin (20 mg a day). Cancer was stabilized and did not progress in 8 of 12 (67%) participants for an average duration of 21 months. An additional benefit accrued as the melatonin/IL-2 therapy was well-tolerated (Lissoni et al. 2000).

Nonresectable brain metastasis remains an untreatable disease. Because of melatonin's cytostatic action (the ability to suppress the growth of cells) and its anticonvulsant activity, the pineal hormone may prove effective in the treatment of brain metastasis. In a study to test the theory, 50 patients with inoperable brain metastasis were given supportive care or supportive care plus 20 mg of melatonin nightly. Freedom from brain tumor progression and survival rates at 1 year were higher in patients who were treated with melatonin compared to those who received only supportive care (Lissoni et al. 1994b, 1996). Even when melatonin was unable to stop the progression of advanced, metastatic disease, it improved the performance status of patients (see Table 2).

Low melatonin levels play a role in escalating rates of breast cancer. As melatonin levels decrease, the secretion of estrogen increases. Nighttime production of melatonin inhibits the body's secretion of estrogen and decreases the proliferation of human breast cancer cells. Conversely, exposure to light during the night decreases melatonin production and increases cumulative lifetime estrogen levels, a sequence that may increase the risk of breast cancer.

In fact, two current studies show that women who work night shifts may increase their risk of breast cancer up to 60%. Blind women have a significantly lower risk (36% less) of breast cancer than normally sighted women because of consistently higher levels of melatonin (Kliukiene et al. 2001). Women, who are classed as only visually impaired, realize no protective effects in regard to breast cancer.

P.S.: Due to difficulties in properly displaying Table 2 please refer to the original web site:
http://www.lef.org/protocols/prtcls-txt/t-prtcl-027.html

Table 2: Summary of Studies Using Melatonin (Lissoni's Phase II Randomized Clinical Trial Results)
1-Year Survival
Tumor Type Patient Basic Therapy Melatonin Melatonin Placebo
Number Dose
Metastatic non 63 Supportive 10 mg 26% under 1%
-small cell lung care only

Glioblastoma 30 Conventional 10 mg 43% under 1%
radiotherapy

Metastatic breast 40 Tamoxifen 20 mg 63% 24%

Brain metastases 50 Conventional 20 mg 38% 12%
radiotherapy

Metastatic 50 IL-2 40 mg 36% 12%
colorectal

Metastatic 60 IL-2 40 mg 45% 19%
non small cell lung

Compiled by Cancer Treatment Centers of America and published in the March 2002 issue of Life Extension Magazine.

It appears that melatonin may also reduce the number of estrogen receptors on breast cancer cells. Since estrogen effectively feeds the growth of hormone-responsive breast tumors, reducing the receptors might slow tumor growth. Science News reported that the amount of melatonin required to inhibit breast cell proliferation appears no greater than the amount commonly present in human blood at night (Science News 93; Moss 1995).

Electromagnetic fields (EMFs) are another inhibitor of melatonin production. There is evidence that ELF (extremely low frequency) magnetic fields can act at the cellular levels to enhance breast cancer cell proliferation by blocking melatonin's natural oncostatic action. The mechanism(s) of action is unknown and may involve modulation of signal transduction events associated with melatonin's regulation of cell growth (Liburdy et al. 1993)

Melatonin delivers another anticancer perk through its antioxidant values. Physicians who once credited glutathione and vitamin E as being antioxidants of choice have now given special honor to melatonin. The neurohormone appears to protect against tumors by shielding molecules (especially DNA) from oxidative stress. Melatonin exerts its antioxidant properties by detoxifying the highly reactive hydroxyl radical, as well as singlet oxygen, hydrogen peroxide, and peroxynitrite anions (Kim et al. 2000).

Lolly
09-01-2006, 10:29 PM
Forgot to report my dose of melatonin, it's 2 mg. in the evening before bedtime, to help with sleep, along with 12 mg. benedryl. I take it an hour before bed, and sleep a good 8 hours. As long as I have a cup of coffee in the morning, I have no problem wakeing up :)

<3 Lolly

R.B.
09-02-2006, 09:44 AM
Since I have been taking fish oil (and cutting down omega sixes), CoQ10 and Alpha lipoic acid my hair has been darkening.

These were the only significant changes to diet at that point.

This was pre any melatonin.

There is some interaction between fats and melatonin.

Melatonin I found does lead to vivid technicolour dreams.

I do not always sleep when I take it but may be that is down to other factors. I only take occasionally at the moment and am trying dosages between .5 and 2mg.

But it could be improved digestion which has settled down massively over about a year, "IBS" type symptoms are largely gone. It is probably a combination of several factors.

RB