HonCode

Go Back   HER2 Support Group Forums > Articles of Interest
Register Gallery FAQ Members List Calendar Today's Posts

 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 03-06-2010, 06:53 PM   #1
Rich66
Senior Member
 
Rich66's Avatar
 
Join Date: Feb 2008
Location: South East Wisconsin
Posts: 3,431
Green Tea/epigallocatechin-3-gallate (EGCG)

(Telomerase/CSC, G1, Cyclins, CDK 1, PCNA, IGF-1,EGFR,VEGF/HIF-1alpha, PI3k/Akt,NFkb,Ras/Raf/MAPK,Glycolysis, Aromatase, w/Pac, w/Hercep, w/TAM, w/plat, w/capsaicin, w/piperine, w/Quercetin, potent formulations)


Int J Mol Sci. 2008 Jun;9(7):1196-206. Epub 2008 Jul 12.
Tea polyphenols and their roles in cancer prevention and chemotherapy.

PDF

Chen D, Dou QP.
The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA.
Many plant-derived, dietary polyphenols have been studied for their chemopreventive and chemotherapeutic properties against human cancers, including green tea polyphenols, genistein (found in soy), apigenin (celery, parsley), luteolin (broccoli), quercetin (onions), kaempferol (broccoli, grapefruits), curcumin (turmeric), etc. The more we understand their involved molecular mechanisms and cellular targets, the better we could utilize these "natural gifts" for the prevention and treatment of human cancer. Furthermore, better understanding of their structure-activity relationships will guide synthesis of analog compounds with improved bio-availability, stability, potency and specificity. This review focuses on green tea polyphenols and seeks to summarize several reported biological effects of tea polyphenols in human cancer systems, highlight the molecular targets and pathways identified, and discuss the role of tea polyphenols in the prevention and treatment of human cancer. The review also briefly describes several other dietary polyphenols and their biological effects on cancer prevention and chemotherapy.

PMID: 19325799 [PubMed - in process]


Transl Oncol. 2011 Jun;4(3):147-56. Epub 2011 Jun 1.
Synergistic Effects of the Green Tea Extract Epigallocatechin-3-gallate and Taxane in Eradication of Malignant Human Prostate Tumors.

Stearns ME, Wang M.

Free PMC Article

Source

Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA.

Abstract

We have examined whether epigallocatechin-3-gallate (EGCG), and extract of green tea, in combination with taxane (i.e., paclitaxel and docetaxel), exerts a synergistic activity in blocking human prostate PC-3ML tumor cell growth in vitro and in vivo. Growth assays in vitro revealed that the IC(50) values were ∼30 µM, ∼3 nM, and ∼6 nM, for EGCG, paclitaxel and docetaxel, respectively. Isobolograms generated from the data clearly indicated that EGCG in combination with paclitaxel or docetaxel had an additive effect in blocking tumor cell growth. EGCG combined with taxane also had an additive effect to increase the expression of apoptotic genes, (p53, p73, p21, and caspase 3) and the percent apoptosis observed in vitro and in tumor modeling studies in severe combined immunodeficient mice. The tumor modeling studies clearly showed that EGCG plus taxane injected intraperitoneally (i.p.) induced a significant increase in apoptosis rates (TUNEL assays) and eliminated preexisting tumors generated from PC-3ML cells implanted i.p., increasing disease-free survival rates to greater than 90%. More importantly, the combination therapy (i.p. biweekly) blocked metastases after intravenous injection of PC-3ML cells through the tail vein. In mice treated with EGCG plus taxane, the disease-free survival rates increased from 0% (in untreated mice) to more than 70% to 80% in treated mice. Taken together, these data demonstrate for the first time that EGCG in combination with taxane may provide a novel therapeutic treatment of advanced prostate cancer.


Liver Int. 2009 May;29(5):670-7. Epub 2009 Feb 17.
Epigallocatechin-gallate modulates chemotherapy-induced apoptosis in human cholangiocarcinoma cells.

Lang M, Henson R, Braconi C, Patel T.
Source

Scott and White Clinic, Texas A&M University Health Sciences Center, College of Medicine, Temple, TX, USA.

Abstract

BACKGROUND:

Green tea polyphenols are chemopreventive in several cancer models but their use as adjunctive therapeutic agents for cancer is unknown.
AIMS:

Cholangiocarcinomas respond poorly to chemotherapeutic agents and our aims were to assess the utility of green tea polyphenols as adjuncts to chemotherapy for cholangiocarcinoma.
MATERIALS AND METHODS:

We assessed the effect of purified green tea catechins on chemotherapy-induced apoptosis in KMCH, CC-LP-1 and Mz-ChA-1 human cholangiocarcinoma cells, and on chemosensitivity of Mz-ChA-1 cell xenografts in nude mice.
RESULTS:

Epigallocatechin-gallate (EGCG), but not the structurally related catechin epigallocatechin, sensitized cells to apoptosis induced by gemcitabine (GEM), mitomycin C or 5-fluorouracil in vitro. Mitochondrial membrane depolarization, cytosolic cytochrome c expression and apoptosis were increased in cells incubated with EGCG and GEM compared with either agent alone. Furthermore, EGCG decreased in vivo growth and increased the sensitivity to GEM of Mz-ChA-1 cell xenografts in nude mice.
CONCLUSIONS:

The green tea polyphenol EGCG sensitizes human cholangiocarcinoma cells to chemotherapy-induced apoptosis and warrants evaluation as an adjunct to chemotherapy for the treatment of human cholangiocarcinoma.



Nanotechnology. 2011 May 27;22(21):215101. Epub 2011 Mar 30.
Green tea extract selectively targets nanomechanics of live metastatic cancer cells.

Cross SE, Jin YS, Lu QY, Rao J, Gimzewski JK.

LINK

Source



Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.

Abstract

Green tea extract (GTE) is known to be a potential anticancer agent (Yang et al 2009 Nat. Rev. Cancer 9 429-39) with various biological activities (Lu et al 2005 Clin. Cancer Res. 11 1675-83; Yang et al 1998 Carcinogenesis 19 611-6) yet the precise mechanism of action is still unclear. The biomechanical response of GTE treated cells taken directly from patient's body samples was measured using atomic force microscopy (AFM) (Binnig et al 1986 Phys. Rev. Lett. 56 930). We found significant increase in stiffness of GTE treated metastatic tumor cells, with a resulting value similar to untreated normal mesothelial cells, whereas mesothelial cell stiffness after GTE treatment is unchanged. Immunofluorescence analysis showed an increase in cytoskeletal-F-actin in GTE treated tumor cells, suggesting GTE treated tumor cells display mechanical, structural and morphological features similar to normal cells, which appears to be mediated by annexin-I expression, as determined by siRNA analysis of an in vitro cell line model. Our data indicates that GTE selectively targets human metastatic cancer cells but not normal mesothelial cells, a finding that is significantly advantageous compared to conventional chemotherapy agents.


Toxicol Lett. 2000 Apr 3;114(1-3):155-62.
Efficacies of tea components on doxorubicin induced antitumor activity and reversal of multidrug resistance.

Sadzuka Y, Sugiyama T, Sonobe T.

LINK

Source

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, Japan. sadzuka@ys7.u-shizuoka-ken.ac.jp

Abstract

Considering of novel biochemical modulation by some foods and beverages, we have performed screening for green tea components that have enhancing effects on doxorubicin (DOX) induced antitumor activity. Components, such as caffeine, theanine, (-)-epigallocatechin gallate (EGCG) and flavonoids have inhibitory effects on the DOX efflux from Ehrlich ascites carcinoma cells. Thus, it is suggested that EGCG and flavonoids may enhance DOX induced antitumor activity and increase the DOX concentrations in tumors through the inhibition of DOX efflux. It is expected that these components in green tea exhibit low toxicity and that there are few side effects of drinking green tea in combination with an antitumor agent. We think that the intake of a favorite beverage favors a positive mental attitude of a patient and increases the efficacy of the chemotherapeutic index, and that this efficacy is useful for improving the quality of life on cancer chemotherapy. In DOX resistant P388 leukemia cell bearing mice theanine increased the DOX induced efficacy through an increase in the DOX concentrations in the tumors. Theanine attacked the same transport process for DOX in both types of cells, elevated the DOX concentration and increased the DOX induced antitumor activity.

Food Chem Toxicol. 2011 Jun;49(6):1410-5. Epub 2011 Mar 31.
Effect of green tea on pharmacokinetics of 5-fluorouracil in rats and pharmacodynamics in human cell lines in vitro.

Qiao J, Gu C, Shang W, Du J, Yin W, Zhu M, Wang W, Han M, Lu W.

LINK

Source

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.

Abstract

Tea drinking is widely practiced in the world and has recently increased among cancer patients. However, the effects of concurrent consumption of tea on the bioavailability and the net therapeutic potential of co-administered chemical drugs are not clear. In this study, the effects of green tea on the pharmacokinetics of 5-fluorouracil (5-FU) in rats and the pharmacodynamics in human cell lines in vitro were studied. The pharmacokinetic experiment indicated that there was an approximately 151% increase in the maximum plasma concentration (C(max)) and an approximately 425% increase in the area under the plasma concentration curve (AUC) of 5-FU in the green tea-treated group compared with the control group. Green tea consumption increased the plasma concentration of 5-FU. In addition, the pharmacodynamics experiment showed that at the moderate dose level (equivalent to <6 cups daily in human), neither fresh green tea extract nor (-)-epigallocatechin-3-gallate (EGCG) showed significant additive effects on the cytotoxicity of 5-FU in human cell lines. The results showed that it is crucial to perform therapeutic drug monitoring (TDM) when the cancer patients have a habit of drinking green tea.
Copyright © 2011 Elsevier Ltd. All rights reserved.



J Mol Med (Berl). 2011 Jun;89(6):595-602. Epub 2011 Feb 18.
Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability.

Ge J, Tan BX, Chen Y, Yang L, Peng XC, Li HZ, Lin HJ, Zhao Y, Wei M, Cheng K, Li LH, Dong H, Gao F, He JP, Wu Y, Qiu M, Zhao YL, Su JM, Hou JM, Liu JY.
LINK


Source

Department of Medical Oncology, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Guo Xue Xiang, Chengdu, Sichuan Province, China.

Abstract

Sunitinib, a novel oral multi-targeted tyrosine kinase inhibitor for patients with metastatic renal cell carcinoma (mRCC) and advanced gastrointestinal stromal tumor, has a good prospect for clinical application and is being investigated for the potential therapy of other tumors. We observed the phenomenon that drinking tea interfered with symptom control in an mRCC patient treated with sunitinib and speculated that green tea or its components might interact with sunitinib. This study was performed to investigate whether epigallocatechin-3-gallate (EGCG), the major constituent of green tea, interacted with sunitinib. The interaction between EGCG and sunitinib was examined in vitro and in vivo. (1)H nuclear magnetic resonance ((1)H-NMR) spectroscopy and mass spectrometry (MS) were used to analyze the interaction between these two molecules and whether a new compound was formed. Solutions of sunitinib and EGCG were intragastrically administered to rats to investigate whether the plasma concentrations of sunitinib were affected by EGCG. In this study, we noticed that a precipitate was formed when the solutions of sunitinib and EGCG were mixed under both neutral and acidic conditions. (1)H-NMR spectra indicated an interaction between EGCG and sunitinib, but no new compound was observed by MS. Sticky semisolid contents were found in the stomachs of sunitinib and EGCG co-administrated mice. The AUC(0-∞) and C (max) of plasma sunitinib were markedly reduced by co-administration of EGCG to rats. Our study firstly showed that EGCG interacted with sunitinib and reduced the bioavailability of sunitinib. This finding has significant practical implications for tea-drinking habit during sunitinib administration.



Front Biosci. 2007 Sep 1;12:4881-99.
Green tea polyphenols: biology and therapeutic implications in cancer.

Shankar S, Ganapathy S, Srivastava RK.
Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, Texas 75703, USA.

FREE TEXT

Multiple lines of evidence, mostly from population-based studies, suggest that green tea consumption is associated with reduced risk of several human malignancies such as cancer and diabetes. Epigallocatechin-3-gallate (EGCG), a major polyphenol found in green tea, is a widely studied chemopreventive agent with potential anticancer activity. Green tea polyphenols inhibit angiogenesis and metastasis, and induce growth arrest and apoptosis through regulation of multiple signaling pathways. Specifically, EGCG regulates expression of VEGF, matrix metalloproteinases, uPA, IGF-1, EGFR, cell cycle regulatory proteins and inhibits NFk B, PI3-K/Akt, Ras/Raf/MAPK and AP-1 signaling pathways, thereby causing strong cancer chemopreventive effects. This review discusses the molecular mechanisms of green tea polyphenols and their therapeutic implications in cancer.

PMID: 17569617 [PubMed - indexed for MEDLINE]



Crit Rev Food Sci Nutr. 2009 May;49(5):463-73.
Green tea: nature's defense against malignancies.

Butt MS, Sultan MT.
National Institute of Food Science and Technology, University of Agriculture, Faisalabad. drmsbutt@yahoo.com
The current practice of introducing phytochemicals to support the immune system or fight against diseases is based on centuries old traditions. Nutritional support is a recent advancement in the domain of diet-based therapies; green tea and its constituents are one of the important components of these strategies to prevent and cure various malignancies. The anti-carcinogenic and anti-mutagenic activities of green tea were highlighted some years ago suggesting that it could reduce the prevalence of cancer and even provide protection. The pharmacological actions of green tea are mainly attributed to polyphenols that includes epigallocatechin-3-gallate (EGCG), epicatechin, epicatechin-3-gallate, epigallocatechin. Green tea and its components effectively mitigate cellular damage arising due to oxidative stress. Green tea is supposed to enhance humoral and cell-mediated immunity, decreasing the risk of certain cancers, and may have certain advantage in treating inflammatory disorders. Much of the cancer chemopreventive properties of green tea are mediated by EGCG that induces apoptosis and promotes cell growth arrest, by altering the expression of cell cycle regulatory proteins, activating killer caspases, and suppressing nuclear factor kappa-B activation. Besides, it regulates and promotes IL-23 dependent DNA repair and stimulates cytotoxic T cells activities in a tumor microenvironment. It also blocks carcinogenesis by modulating the signal transduction pathways involved in cell proliferation, transformation, inflammation and metastasis. The review is intended to highlight the chemistry of green tea, its antioxidant potential, its immunopotentiating properties and mode of action against various cancer cell lines that showed its potential as a chemopreventive agent against colon, skin, lung, prostate, and breast cancer.

PMID: 19399671 [PubMed - indexed for MEDLINE]


Cancer Lett. 2007 Jan 8;245(1-2):232-41. Epub 2006 Mar 6.
Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo.

Thangapazham RL, Singh AK, Sharma A, Warren J, Gaddipati JP, Maheshwari RK.
Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
Tea [Camellia sinensis (Theaceae)] intake is second only to water in terms of worldwide popularity as a beverage. The Green tea polyphenols have been shown to have a protective effect in prostate cancer in various pre-clinical animal models and has been reported to be effective in several other cancer types as well. An inverse association between the risk of breast cancer and the intake of green tea has also been reported in Asian Americans. Several epidemiological studies have shown that breast cancer progression is delayed in the Asian population that consumes green tea on regular basis. In this study, we report the effectiveness of green tea polyphenols (GTP) and its constituent Epigallocatechin Gallate (EGCG) in tumor regression using both in-vitro cell culture models and in vivo athymic nude mice models of breast cancer. The anti-proliferative effect of GTP and EGCG on the growth of human breast cancer MDA-MB-231 cell was studied using a tetrazolium dye-based (MTT) assay. Both GTP and EGCG treatment had the ability to arrest the cell cycle at G1 phase as assessed by flow cytometry. The expression of Cyclin D, Cyclin E, CDK 4, CDK 1 and PCNA were down regulated over the time in GTP and EGCG treated experimental group, compared to the untreated control group as evaluated by western blot analysis for cell cycle proteins, which corroborated the G1 block. Nude mice inoculated with human breast cancer MDA-MB-231 cells and treated with GTP and EGCG were effective in delaying the tumor incidence as well as reducing the tumor burden when compared to the water fed and similarly handled control. GTP and EGCG treatment were also found to induce apoptosis and inhibit the proliferation when the tumor tissue sections were examined by immunohistochemistry. Our results suggest that GTP and EGCG treatment inhibits proliferation and induce apoptosis of MDA-MB-231 cells in-vitro and in-vivo. All together, these data sustain our contention that GTP and EGCG have anti-tumor properties.

PMID: 16519995 [PubMed - indexed for MEDLINE]




Mol Cancer Ther. 2006 May;5(5):1227-38.
Green tea extract and (-)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells.

Zhang Q, Tang X, Lu Q, Zhang Z, Rao J, Le AD.
Division of Surgical, Therapeutic and Bioengineering Sciences, Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Health Sciences Campus, 2250 Alcazar Street, CSA103, Los Angeles, CA 90033, USA.
Green tea extract and its major component (-)-epigallocatechin-3-gallate (EGCG) exhibit antiangiogenic activities in various experimental tumor models. A growing body of evidence has established that hypoxia-inducible factor-1alpha (HIF-1alpha) and its downstream target, vascular endothelial growth factor (VEGF), play a critical role in tumor angiogenesis. In this study, we investigated the effect of green tea extract and EGCG on HIF-1alpha and VEGF expression in human cervical carcinoma (HeLa) and hepatoma (HepG2) cells. Our results showed that green tea extract and EGCG significantly inhibited hypoxia- and serum-induced HIF-1alpha protein accumulation in these cancer cells but had no effects on HIF-1alpha mRNA expression. Suppression of HIF-1alpha protein by green tea extract and EGCG also resulted in a drastic decrease in VEGF expression at both mRNA and protein levels. The mechanisms of green tea extract and EGCG inhibition of hypoxia-induced HIF-1alpha protein accumulation seem to involve the blocking of both phosphatidylinositol 3-kinase/Akt and extracellular signal-regulated kinase 1/2 signaling pathways and the enhancing of HIF-1alpha protein degradation through the proteasome system. In addition, green tea extract and EGCG inhibited serum-induced HIF-1alpha protein and VEGF expression by interfering with the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathways, which play a crucial role in the protein translational machinery cascade. Functionally, green tea extract and EGCG abolished both chemoattractant- and hypoxia-stimulated HeLa cell migration. Our data suggested that HIF-1alpha/VEGF function as therapeutic target for green tea extract and EGCG in the context of cancer chemoprevention and anticancer therapy.

PMID: 16731755 [PubMed - indexed for MEDLINE]



Clin Cancer Res. 2009 Dec 15;15(24):7608-7615.
Novel Inhibitors of Fatty Acid Synthase with Anticancer Activity.

Puig T, Turrado C, Benhamú B, Aguilar H, Relat J, Ortega-Gutiérrez S, Casals G, Marrero PF, Urruticoechea A, Haro D, López-RodrÃ*guez ML, Colomer R.
Authors' Affiliations: Institut CatalÃ* d'Oncologia and Institut d'Investigació Biomèdica de Girona, BioquÃ*mica i Biologia Molecular, Facultat de Ciències, Universitat de Girona, Girona, Spain; QuÃ*mica Orgánica I, Facultad de Ciencias QuÃ*micas, Universidad Complutense de Madrid, M.D. Anderson Cancer Center España, Madrid, Spain; Institut CatalÃ* d'Oncologia and Institut d'Investigació Biomèdica de Bellvitge, and BioquÃ*mica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain.
PURPOSE: Fatty acid synthase (FASN) is overexpressed in human breast carcinoma. The natural polyphenol (-)-epigallocatechin-3-gallate blocks in vitro FASN activity and leads to apoptosis in breast cancer cells without any effects on carnitine palmitoyltransferase-1 (CPT-1) activity, and in vivo, does not decrease body weight. We synthesized a panel of new polyphenolic compounds and tested their effects on breast cancer models.Two compounds potently inhibited FASN activity and showed high cytotoxicity. Moreover, the compounds induced apoptosis and caused a marked decrease in the active forms of HER2, AKT, and ERK1/2 proteins. EXPERIMENTAL DESIGN: We evaluated the in vitro effects of the compounds on breast cancer cell growth (SK-Br3, MCF-7, and MDA-MB-231), apoptosis [as assessed by cleavage of poly(ADP-ribose) polymerase], cell signaling (HER2, ERK1/2, and AKT), and fatty acid metabolism enzymes (FASN and CPT-1). In vivo, we have evaluated their antitumor activity and their effect on body weight in a mice model of BT474 breast cancer cells. RESULTS: Interestingly, the compounds did not stimulate CPT-1 activity in vitro. We show evidence that one of the FASN inhibitors blocked the growth of BT474 breast cancer xenografts and did not induce weight loss in vivo. CONCLUSIONS: The synthesized polyphenolic compounds represent a novel class of FASN inhibitors, with in vitro and in vivo anticancer activity, that do not exhibit cross-activation of beta-oxidation and do not induce weight loss in animals. One of the compounds blocked the growth of breast cancer xenografts. These FASN inhibitors may represent new agents for breast cancer treatment. (Clin Cancer Res 2009;15(24):7608-15).

PMID: 20008854 [PubMed - as supplied by publisher]





Cancer Res. 2007 Oct 1;67(19):9018-23.
Trastuzumab-resistant HER2-driven breast cancer cells are sensitive to epigallocatechin-3 gallate.

Eddy SF, Kane SE, Sonenshein GE.
Department of Biochemistry and Women's Health Interdisciplinary Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
Overexpression of the epidermal growth factor receptor family member HER2 is found in approximately 30% of breast cancers and is a target for immunotherapy. Trastuzumab, a humanized monoclonal antibody against HER2, is cytostatic when added alone and highly successful in clinical settings when used in combination with other chemotherapeutic agents. Unfortunately, HER2 tumors in patients develop resistance to trastuzumab or metastasize to the brain, which is inaccessible to antibody therapy. Previously, we showed that the green tea polyphenol epigallocatechin-3 gallate (EGCG) inhibits growth and transformed phenotype of Her-2/neu-driven mouse mammary tumor cells. The different modes of action of EGCG and trastuzumab led us to hypothesize that EGCG will inhibit HER2-driven breast cancer cells resistant to trastuzumab. We studied trastuzumab-resistant BT474 human breast cancer cells, isolated by chronic trastuzumab exposure, and JIMT-1 breast cancer cells, derived from a pleural effusion in a patient who displayed clinical resistance to trastuzumab therapy. EGCG treatment caused a dose-dependent decrease in growth and cellular ATP production, and apoptosis at high concentrations. Akt activity was suppressed by EGCG leading to the induction of FOXO3a and target cyclin-dependent kinase inhibitor p27Kip1 levels. Thus, EGCG in combination with trastuzumab may provide a novel strategy for treatment of HER2-overexpressing breast cancers, given that EGCG can cross the blood-brain barrier.

PMID: 17909003 [PubMed - indexed for MEDLINE]



Breast Cancer Res. 2010 Jan 15;12(1):R8. [Epub ahead of print]
(-)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma.

Luo T, Wang J, Yin Y, Hua H, Jing J, Sun X, Li M, Zhang Y, Jiang Y.
ABSTRACT: INTRODUCTION: Paclitaxel (Taxol(R)) is a microtubule-targeted agent that is widely used for cancer treatment. However, resistance to paclitaxel is frequently encountered in the clinic. There is increasing interest in identifying compounds that may increase the sensitivity to conventional chemotherapeutic agents. In this study, we investigated whether green tea polyphenol (-)-epigallocatechin gallate (EGCG) can sensitize breast carcinoma to paclitaxel in vivo. METHODS: Breast cancer cells were treated with or without EGCG and paclitaxel followed by detection of cell survival and apoptosis. c-Jun NH2-terminal kinase (JNK) phosphorylation and glucose regulated protein 78 (GRP78) expression were detected by Western blotting. For in vivo study, 4T1 breast cancer cells were inoculated into Balb/c mice to establish a syngenic transplantation model. The tumor-bearing mice were treated with or without EGCG (30mg/kg, i.p.) and paclitaxel (10mg/kg, i.p.). Tumor growth was monitored. Apoptosis in tumor tissues was detected. Cell lysates from tumors were subjected to Western blot analysis of GRP78 expression and JNK phosphorylation. RESULTS: EGCG synergistically sensitized breast cancer cells to paclitaxel in vitro and in vivo. EGCG in combination with paclitaxel significantly induced 4T1 cells apoptosis compared with each single treatment When tumor-bearing mice were treated with paclitaxel in combination with EGCG, tumor growth was significantly inhibited, whereas the single-agent activity for paclitaxel or EGCG was poor. EGCG overcame paclitaxel -induced GRP78 expression and potentiated paclitaxel -induced JNK phosphorylation in 4T1 cells both in vitro and in vivo. CONCLUSIONS: EGCG may be used as a sensitizer to enhance the cytotoxicity of paclitaxel.

PMID: 20078855 [PubMed - as supplied by publisher]





Urol Oncol. 2008 Sep 23. [Epub ahead of print]
Taxol synergizes with antioxidants in inhibiting hormal refractory prostate cancer cell growth.

Ping SY, Hour TC, Lin SR, Yu DS.
Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, Republic of China.
Taxanes are chemotherapeutic agents commonly used to treat various carcinomas. Dietary antioxidants, such as vitamin E, green tea extracts, and isoflavones have been used against prostate cancer, and exhibit anticancer effects both in vitro and in vivo. We evaluated the combined effect of taxol (paclitaxel) with pyrrolidine dithiocarbamate, vitamin E, epigallocatechin gallate, and genistein in killing hormone-refractory prostate cancer cells. Those agents were tested on the hormone-refractory prostate cancer cell line PC-3, and the viability of the cells was determined using MTT {3 (4, 5-dimethylthiazo-2-yl)-2, 5-diphenyl tetrazolium} assay after drug treatment. PC-3 cells were sensitive to these drugs with 50% inhibitory concentrations of 0.1, 23, 220, 1122, and 260 muM, for taxol, pyrrolidine dithiocarbamate, epigallocatechin gallate, genistein, and vitamin E, respectively. Genistein, pyrrolidine dithiocarbamate, and epigallocatechin gallate showed synergistic cytotoxicity to PC-3 cells when combined with 0.01 muM taxol. Only high concentration of vitamin E showed a synergistic effect with this dose of taxol. Further study revealed that 3 combinations could induce sub-G1 phase of cell cycle, induce apoptosis, and increase caspase activity and decrease Bcl-2 expression simultaneously. In conclusion, in addition to vitamin E, incorporation of these antioxidants with taxan-based cytotoxic therapies offers encouraging strategies for combating hormone-refractory prostate cancers.

PMID: 18818108 [PubMed - as supplied by publisher]




Volume 269, Issue 2, Pages 269-280 (8 October 2008)
Multitargeted therapy of cancer by green tea polyphenols

Naghma Khan, Hasan Mukhtar
Received 20 February 2008; received in revised form 20 February 2008; accepted 9 April 2008. published online 23 May 2008.
LINK


Abstract

Tea ranks second only to water as a major component of fluid intake worldwide and has been considered a health-promoting beverage since ancient times. For the past two decades, we and others have been investigating the potential cancer preventive and therapeutic effects of green tea and its polyphenolic mixture termed GTP. It has become clear that much of these effects of GTP are mediated by its most abundant catechin, epigallocatechin gallate (EGCG). Large amount of encouraging data from in vitro and animal models has emerged making clear that green tea is a nature’s gift molecule endowed with anticancer effects. Epidemiological and geographical observations suggest that these laboratory data may be applicable to human population. Clinical trials of GTP, especially in prostate cancer patients have yielded encouraging results. This article briefly reviews properties of GTP, especially EGCG with reference to multitargeted therapy of cancer.


Corresponding author. Tel.: +1 608 263 3927; fax: +1 608 263 5223.




Rejuvenation Res. 2006 Spring;9(1):45-55.
Catechin-vanilloid synergies with potential clinical applications in cancer.

Morré DM, Morré DJ.
Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47907-2059, USA. morredm@purdue.edu
A cancer-specific cell surface protein, tNOX, has been identified as a target for low-dose cell killing (apoptosis) of cancer cells by green tea catechins and Capsicum vanilloid combinations. This protein is uniquely associated with all forms of cancer and is absent from normal cells and tissues. Its activity is correlated with cancer growth. When blocked, cancer cells fail to enlarge after division and eventually die. Among the most potent and effective inhibitors of tNOX are naturally occurring polyphenols exemplified by the principal green tea catechin (-)-epigallocatechin gallate (EGCg) and the vanilloid capsaicin. Catechin-vanilloid combinations are 10 to 100 times more effective than either catechins or vanilloids alone. Vector-forced overexpression of tNOX cDNA and antisense has demonstrated that the tNOX target is both necessary and sufficient to explain the anticancer properties of green tea catechins alone and in vanilloid-containing combinations. The necessity and sufficiency of tNOX was validated as the catechin target with transgenic mice overexpressing the processed form of tNOX. Transgenic mice grew faster and the increased growth caused by tNOX overexpression was blocked by EGCg in the drinking water. A catechin-vanilloid mixture where one 350-mg capsule is equivalent to 16 cups of green tea in its ability to inhibit tNOX and growth of cancer cells in culture is undergoing clinical evaluation as a therapeutic aid for cancer patients.

PMID: 16608395 [PubMed - indexed for MEDLINE]



J Nutr. 2004 Aug;134(8):1948-52.
Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice.

Lambert JD, Hong J, Kim DH, Mishin VM, Yang CS.
Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA. joshua_lambert@hotmail.com
(-)-Epigallocatechin-3-gallate (EGCG), from green tea (Camellia sinensis), has demonstrated chemopreventive activity in animal models of carcinogenesis. Previously, we reported the bioavailability of EGCG in rats (1.6%) and mice (26.5%). Here, we report that cotreatment with a second dietary component, piperine (from black pepper), enhanced the bioavailability of EGCG in mice. Intragastric coadministration of 163.8 micromol/kg EGCG and 70.2 micromol/kg piperine to male CF-1 mice increased the plasma C(max) and area under the curve (AUC) by 1.3-fold compared to mice treated with EGCG only. Piperine appeared to increase EGCG bioavailability by inhibiting glucuronidation and gastrointestinal transit. Piperine (100 micromol/L) inhibited EGCG glucuronidation in mouse small intestine (by 40%) but not in hepatic microsomes. Piperine (20 micromol/L) also inhibited production of EGCG-3"-glucuronide in human HT-29 colon adenocarcinoma cells. Small intestinal EGCG levels in CF-1 mice following treatment with EGCG alone had a C(max) = 37.50 +/- 22.50 nmol/g at 60 min that then decreased to 5.14 +/- 1.65 nmol/g at 90 min; however, cotreatment with piperine resulted in a C(max) = 31.60 +/- 15.08 nmol/g at 90 min, and levels were maintained above 20 nmol/g until 180 min. This resulted in a significant increase in the small intestine EGCG AUC (4621.80 +/- 1958.72 vs. 1686.50 +/- 757.07 (nmol/g.min)). EGCG appearance in the colon and the feces of piperine-cotreated mice was slower than in mice treated with EGCG alone. The present study demonstrates the modulation of the EGCG bioavailablity by a second dietary component and illustrates a mechanism for interactions between dietary chemicals.

PMID: 15284381 [PubMed - indexed for MEDLINE]




Nutr Res. 2009 Nov;29(11):784-93.
Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet.

Chen N, Bezzina R, Hinch E, Lewandowski PA, Cameron-Smith D, Mathai ML, Jois M, Sinclair AJ, Begg DP, Wark JD, Weisinger HS, Weisinger RS.
Department of Optometry and Vision Sciences, University of Melbourne, Australia.
The mechanisms of how tea and epigallocatechin-3-gallate (EGCG) lower body fat are not completely understood. This study investigated long-term administration of green tea (GT), black tea (BT), or isolated EGCG (1 mg/kg per day) on body composition, glucose tolerance, and gene expression related to energy metabolism and lipid homeostasis; it was hypothesized that all treatments would improve the indicators of metabolic syndrome. Rats were fed a 15% fat diet for 6 months from 4 weeks of age and were supplied GT, BT, EGCG, or water. GT and BT reduced body fat, whereas GT and EGCG increased lean mass. At 16 weeks GT, BT, and EGCG improved glucose tolerance. In the liver, GT and BT increased the expression of genes involved in fatty acid synthesis (SREBP-1c, FAS, MCD, ACC) and oxidation (PPAR-alpha, CPT-1, ACO); however, EGCG had no effect. In perirenal fat, genes that mediate adipocyte differentiation were suppressed by GT (Pref-1, C/EBP-beta, and PPAR-gamma) and BT (C/EBP-beta), while decreasing LPL, HSL, and UCP-2 expression; EGCG increased expression of UCP-2 and PPAR-gamma genes. Liver triacylglycerol content was unchanged. The results suggest that GT and BT suppressed adipocyte differentiation and fatty acid uptake into adipose tissue, while increasing fat synthesis and oxidation by the liver, without inducing hepatic fat accumulation. In contrast, EGCG increased markers of thermogenesis and differentiation in adipose tissue, while having no effect on liver or muscle tissues at this dose. These results show novel and separate mechanisms by which tea and EGCG may improve glucose tolerance and support a role for these compounds in obesity prevention.

PMID: 19932867 [PubMed - in process]


J Nutr. 2006 Oct;136(10):2512-8.
Epigallocatechin gallate supplementation alleviates diabetes in rodents.

Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P.
DSM Nutritional Products Ltd, Department of Human Nutrition and Health, CH-4002 Basel, Switzerland. swen.wolfram@dsm.com
As the prevalence of type 2 diabetes mellitus is increasing at an alarming rate, effective nutritional and exercise strategies for the prevention of this disease are required. Specific dietary components with antidiabetic efficacy could be one aspect of these strategies. This study investigated the antidiabetic effects of the most abundant green tea catechin, epigallocatechin gallate (EGCG, TEAVIGO), in rodent models of type 2 diabetes mellitus and H4IIE rat hepatoma cells. We assessed glucose and insulin tolerance in db/db mice and ZDF rats after they ingested EGCG. Using gene microarray and real-time quantitative RT-PCR we investigated the effect of EGCG on gene expression in H4IIE rat hepatoma cells as well as in liver and adipose tissue of db/db mice. EGCG improved oral glucose tolerance and blood glucose in food-deprived rats in a dose-dependent manner. Plasma concentrations of triacylglycerol were reduced and glucose-stimulated insulin secretion was enhanced. In H4IIE cells, EGCG downregulated genes involved in gluconeogenesis and the synthesis of fatty acids, triacylgycerol, and cholesterol. EGCG decreased the mRNA expression of phosphoenolpyruvate carboxykinase in H4IIE cells as well as in liver and adipose tissue of db/db mice. Glucokinase mRNA expression was upregulated in the liver of db/db mice in a dose-dependent manner. This study shows that EGCG beneficially modifies glucose and lipid metabolism in H4IIE cells and markedly enhances glucose tolerance in diabetic rodents. Dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes mellitus.

PMID: 16988119 [PubMed - indexed for MEDLINE]




Mol Pharmacol. 2010 Jan;77(1):17-25. Epub 2009 Oct 14.
Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal.

Lee JH, Jin H, Shim HE, Kim HN, Ha H, Lee ZH.
Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, 28 Yeongon-Dong, Jongro-Gu, Seoul 110-749, Republic of Korea.
Epigallocatechin-3-gallate (EGCG), the major anti-inflammatory compound in green tea, has been shown to suppress osteoclast differentiation. However, the precise molecular mechanisms underlying the inhibitory action of EGCG in osteoclastogenesis and the effect of EGCG on inflammation-mediated bone destruction remain unclear. In this study, we found that EGCG inhibited osteoclast formation induced by osteoclastogenic factors in bone marrow cell-osteoblast cocultures but did not affect the ratio of receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) to osteoprotegerin induced by osteoclastogenic factors in osteoblasts. We also found that EGCG inhibited osteoclast formation from bone marrow macrophages (BMMs) induced by macrophage colony-stimulating factor plus RANKL in a dose-dependent manner without cytotoxicity. Pretreatment with EGCG significantly inhibited RANKL-induced the gene expression of c-Fos and nuclear factor of activated T-cells (NFATc1), essential transcription factors for osteoclast development. EGCG suppressed RANKL-induced activation of c-Jun N-terminal protein kinase (JNK) pathway, among the three well known mitogen-activated protein kinases and also inhibited RANKL-induced phosphorylation of the NF-kappaB p65 subunit at Ser276 and NF-kappaB transcriptional activity without affecting the degradation of IkappaBalpha and NF-kappaB DNA-binding in BMMs. The inhibitory effect of EGCG on osteoclast formation was somewhat reversed by retroviral c-Fos overexpression, suggesting that c-Fos is a downstream target for antiosteoclastogenic action of EGCG. In addition, EGCG treatment reduced interleukin-1-induced osteoclast formation and bone destruction in mouse calvarial bone in vivo. Taken together, our data suggest that EGCG has an antiosteoclastogenic effect by inhibiting RANKL-induced the activation of JNK/c-Jun and NF-kappaB pathways, thereby suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors.

PMID: 19828731 [PubMed - indexed for MEDLINE]
__________________

Mom's treatment history (link)
Rich66 is offline   Reply With Quote
 


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On

Forum Jump


All times are GMT -7. The time now is 10:26 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Copyright HER2 Support Group 2007 - 2021
free webpage hit counter