HonCode

Go Back   HER2 Support Group Forums > Articles of Interest
Register Gallery FAQ Members List Calendar Search Today's Posts Mark Forums Read

Reply
 
Thread Tools Display Modes
Old 03-04-2019, 05:45 PM   #1
Nguyen
Senior Member
 
Join Date: Nov 2005
Posts: 503
Exercise-Induced Catecholamines Activate the Hippo Tumor Suppressor Pathway to Reduce

"...
Hojman said the important message is that exercise can have an effect on tumor cell growth and the metastasis process. Yet this regulation is dependent on increases in epinephrine. This can be obtained if the performed exercise is of moderate to high intensity and associated with increases in heart rate and heavy breathing.
..."

Nguyen

http://cancerres.aacrjournals.org/co...7/18/4894.long

Abstract

Strong epidemiologic evidence documents the protective effect of physical activity on breast cancer risk, recurrence, and mortality, but the underlying mechanisms remain to be identified. Using human exercise–conditioned serum for breast cancer cell incubation studies and murine exercise interventions, we aimed to identify exercise factors and signaling pathways involved in the exercise-dependent suppression of breast cancer. Exercise-conditioned serum from both women with breast cancer (n = 20) and healthy women (n = 7) decreased MCF-7 (hormone-sensitive) and MDA-MB-231 (hormone-insensitive) breast cancer cell viability in vitro by 11% to 19% and reduced tumorigenesis by 50% when preincubated MCF-7 breast cancer cells were inoculated into NMRI-Foxn1nu mice. This exercise-mediated suppression of cell viability and tumor formation was completely blunted by blockade of β-adrenergic signaling in MCF-7 cells, indicating that catecholamines were the responsible exercise factors. Both epinephrine (EPI) and norepinephrine (NE) could directly inhibit breast cancer cell viability, as well as tumor growth in vivo. EPI and NE activate the tumor suppressor Hippo signaling pathway, and the suppressive effect of exercise-conditioned serum was found to be mediated through phosphorylation and cytoplasmic retention of YAP and reduced expression of downstream target genes, for example, ANKRD1 and CTGF. In parallel, tumor-bearing mice with access to running wheels showed reduced growth of MCF-7 (–36%, P < 0.05) and MDA-MB-231 (–66%, P < 0.01) tumors and, for the MCF-7 tumor, increased regulation of the Hippo signaling pathway. Taken together, our findings offer a mechanistic explanation for exercise-dependent suppression of breast cancer cell growth. Cancer Res; 77(18); 4894–904. ©2017 AACR.
Nguyen is offline   Reply With Quote
Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On

Forum Jump


All times are GMT -7. The time now is 07:18 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Copyright HER2 Support Group 2007 - 2021
free webpage hit counter