HonCode

Go Back   HER2 Support Group Forums > Articles of Interest
Register Gallery FAQ Members List Calendar Today's Posts

 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 06-15-2009, 08:39 AM   #10
Rich66
Senior Member
 
Rich66's Avatar
 
Join Date: Feb 2008
Location: South East Wisconsin
Posts: 3,431
1: Prostate. 2009 May 11. [Epub ahead of print] Links
Tranilast inhibits hormone refractory prostate cancer cell proliferation and suppresses transforming growth factor beta1-associated osteoblastic changes.

Izumi K, Mizokami A, Li YQ, Narimoto K, Sugimoto K, Kadono Y, Kitagawa Y, Konaka H, Koh E, Keller ET, Namiki M.
Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
BACKGROUND: Tranilast is a therapeutic agent used in treatment of allergic diseases, although it has been reported to show anti-tumor effects on some cancer cells. To elucidate the effects of tranilast on prostate cancer, we investigated the mechanisms of its anti-tumor effect on prostate cancer. METHODS: The anti-tumor effects and related mechanisms of tranilast were investigated both in vitro on prostate cancer cell lines and bone-derived stromal cells, and in vivo on severe combined immunodeficient (SCID) mice. We verified its clinical effect in patients with advanced hormone refractory prostate cancer (HRPC). RESULTS: Tranilast inhibited the proliferation of LNCaP, LNCaP-SF, and PC-3 cells in a dose-dependent manner and growth of the tumor formed by inoculation of LNCaP-SF in the dorsal subcutis and in the tibia of castrated SCID mice. Flow cytometry and TUNEL assay revealed induction of cell cycle arrest and apoptosis by tranilast. Tranilast increased expression of proteins involved in induction of cell cycle arrest and apoptosis. Coculture with bone-derived stromal cells induced proliferation of LNCaP-SF cells. Tranilast also suppressed secretion of transforming growth factor beta1 (TGF-beta1) from bone-derived stromal cells, which induced their differentiation. Moreover, tranilast inhibited TGF-beta1-mediated differentiation of bone-derived stromal cells and LNCaP-SF cell migration induced by osteopontin. In the clinical investigation, PSA progression was inhibited in 4 of 16 patients with advanced HRPC. CONCLUSIONS: These observations suggest that tranilast may be a useful therapeutic agent for treatment of HRPC via the direct inhibitory effect on cancer cells and suppression of TGF-beta1-associated osteoblastic changes in bone metastasis. Prostate (c) 2009 Wiley-Liss, Inc.
PMID: 19434660 [
Rich66 is offline   Reply With Quote
 


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On

Forum Jump


All times are GMT -7. The time now is 06:34 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Copyright HER2 Support Group 2007 - 2021
free webpage hit counter