HonCode

Go Back   HER2 Support Group Forums > her2group
Register Gallery FAQ Members List Calendar Search Today's Posts Mark Forums Read

Reply
 
Thread Tools Display Modes
Old 08-18-2015, 06:00 AM   #1
Lani
Senior Member
 
Join Date: Mar 2006
Posts: 4,778
Thumbs up mechanism by which breast cancer cells sneak intobloodstream 2 metastasize elucidated

should allow better treatments to prevent spread of breast cancer, but as bc metastasizes often before it is diagnosed, such treatment may be particularly effective via preventative treatment for high risk individuals:


Blood Vessel "Doorway" Lets Breast Cancer Cells Spread Through Blood Stream
[Albert Einstein College of Medicine]
August 12, 2015—(BRONX, NY)—Using real-time, high-resolution imaging, scientists have identified how a “doorway” in the blood vessel wall allows cancer cells to spread from breast tumors to other parts of the body. The findings lend support to emerging tests that better predict whether breast cancer will spread, which could spare women from invasive and unnecessary treatments, and could lead to new anti-cancer therapies. The research, conducted by investigators at the NCI-designated Albert Einstein Cancer Center (AECC) and Montefiore Einstein Center for Cancer Care, utilized a mouse model of human breast cancer and mice implanted with human breast tissue. The study was published today in the online edition of Cancer Discovery.

Through high-resolution imaging, researchers, led by John Condeelis, Ph.D., at Albert Einstein College of Medicine and Montefiore Health System, have identified how a “doorway” in the blood vessel wall allows cancer cells to spread from breast tumors to other parts of the body.

The Einstein-Montefiore researchers previously found that breast cancer spreads when three specific cells are in direct contact: an endothelial cell (a type of cell that lines the blood vessels), a perivascular macrophage (a type of immune cell found near blood vessels), and a tumor cell that produces high levels of Mena, a protein that enhances a cancer cell’s ability to invade. The site where these three cells come in direct and stable contact––called a tumor microenvironment of metastasis, or TMEM––is where tumor cells enter blood vessels.

“It has been known for some time that blood vessels in tumors are abnormally permeable. But what regulates that permeability hasn’t been clear. Based on our latest imaging studies, we can now say that this phenomenon is regulated by TMEM macrophages,” said lead author Allison Harney, Ph.D., Bridge Postdoctoral Fellow in the Integrated Imaging Program at Albert Einstein College of Medicine.

This new research indicates that the TMEM macrophage releases a protein called vascular endothelial growth factor, or VEGF, which causes a local increase in blood vessel permeability. The effect is temporary but can last long enough to allow cancer cells to enter the blood stream—escaping the primary tumor and traveling to distant metastatic sites.

The researchers also observed for the first time that transient blood vessel permeability and tumor cell entry into the bloodstream occur simultaneously and exclusively at TMEM sites. The discovery was made using intravital high-resolution two-photon microscopy to image primary breast cancer tumors in mice and human xenografts (human breast cancer tissue grafted into mice).

“The discovery of a unique doorway that allows tumor cells into the blood stream opens new opportunities for the development of anti-metastasis therapeutics” said study leader John Condeelis, Ph.D., professor and co-chair of anatomy and structural biology, co-director of the Gruss Lipper Biophotonics Center and the Integrated Imaging Program, and the Judith and Burton P. Resnick Chair in Translational Research at Einstein and leader of the Tumor Microenvironment and Metastasis Program at AECC. - See more at: http://www.einstein.yu.edu/news/rele....NXzMjRiU.dpuf
ABSTRACT: Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA
[Cancer Discovery]
Dissemination of tumor cells is an essential step in metastasis. Direct contact between a macrophage, mammalian-enabled (MENA)–overexpressing tumor cell, and endothelial cell [Tumor MicroEnvironment of Metastasis (TMEM)] correlates with metastasis in breast cancer patients. Here we show, using intravital high-resolution two-photon microscopy, that transient vascular permeability and tumor cell intravasation occur simultaneously and exclusively at TMEM. The hyperpermeable nature of tumor vasculature is described as spatially and temporally heterogeneous. Using real-time imaging, we observed that vascular permeability is transient, restricted to the TMEM, and required for tumor cell dissemination. VEGFA signaling from TIE2hi TMEM macrophages causes local loss of vascular junctions, transient vascular permeability, and tumor cell intravasation, demonstrating a role for the TMEM within the primary mammary tumor. These data provide insight into the mechanism of tumor cell intravasation and vascular permeability in breast cancer, explaining the value of TMEM density as a predictor of distant metastatic recurrence in patients.

SIGNIFICANCE: Tumor vasculature is abnormal with increased permeability. Here, we show that VEGFA signaling from TIE2hi TMEM macrophages results in local, transient vascular permeability and tumor cell intravasation. These data provide evidence for the mechanism underlying the association of TMEM with distant metastatic recurrence, offering a rationale for therapies targeting TMEM
Lani is offline   Reply With Quote
Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -7. The time now is 02:40 PM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Copyright HER2 Support Group 2007 - 2021
free webpage hit counter