HonCode

Go Back   HER2 Support Group Forums > her2group
Register Gallery FAQ Members List Calendar Today's Posts

 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 05-27-2010, 11:13 AM   #1
Lani
Senior Member
 
Join Date: Mar 2006
Posts: 4,778
important (though complicated) paper by Dr. Slamon et al on herceptin/tykerb

resisitance and why to combine the two. Has to do with cell lines rather than people at this point, but shows how they are getting to understand better which agent(s) best

Mol Cancer Ther. 2010 May 25. [Epub ahead of print]
Activated Phosphoinositide 3-Kinase/AKT Signaling Confers Resistance to Trastuzumab but not Lapatinib.
O'Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, Duffy MJ, Crown J, O'Donovan N, Slamon DJ.

Authors' Affiliations: 1Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and 2National Institute for Cellular Biotechnology, Dublin City University and 3Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, Dublin 4 and UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin, Ireland.
Abstract
Trastuzumab and lapatinib provide clinical benefit to women with human epidermal growth factor receptor 2 (HER)-positive breast cancer. However, not all patients whose tumors contain the HER2 alteration respond. Consequently, there is an urgent need to identify new predictive factors for these agents. The aim of this study was to investigate the role of receptor tyrosine kinase signaling and phosphoinositide 3-kinase (PI3K)/AKT pathway activation in conferring resistance to trastuzumab and lapatinib. To address this question, we evaluated response to trastuzumab and lapatinib in a panel of 18 HER2-amplified cell lines, using both two- and three-dimensional culture. The SUM-225, HCC-1419, HCC-1954, UACC-893, HCC-1569, UACC-732, JIMT-1, and MDA-453 cell lines were found to be innately resistant to trastuzumab, whereas the MDA-361, MDA-453, HCC-1569, UACC-732, JIMT-1, HCC-202, and UACC-893 cells are innately lapatinib resistant. Lapatinib was active in de novo (SUM-225, HCC-1419, and HCC-1954) and in a BT-474 cell line with acquired resistance to trastuzumab. In these cells, trastuzumab had little effect on AKT phosphorylation, whereas lapatinib retained activity through the dephosphorylation of AKT. Increased phosphorylation of HER2, epidermal growth factor receptor, HER3, and insulin-like growth factor IR correlated with response to lapatinib but not trastuzumab. Loss of PTEN or the presence of activating mutations in PI3K marked resistance to trastuzumab, but lapatinib response was independent of these factors. Thus, increased activation of the PI3K/AKT pathway correlates with resistance to trastuzumab, which can be overcome by lapatinib. In conclusion, pharmacologic targeting of the PI3K/AKT pathway may provide benefit to HER2-positive breast cancer patients who are resistant to trastuzumab therapy. Mol Cancer Ther; 9(6); OF1-14. (c)2010 AACR.

PMID: 20501798
Lani is offline   Reply With Quote
 


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -7. The time now is 05:20 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Copyright HER2 Support Group 2007 - 2021
free webpage hit counter