View Single Post
Old 04-19-2012, 04:01 PM   #1
gdpawel
Senior Member
 
gdpawel's Avatar
 
Join Date: Aug 2006
Location: Pennsylvania
Posts: 1,080
103rd Annual American Association of Cancer Research (AACR) Meeting

By Robert Nagourney, MD, PhD
Rational Therapeutics, Inc.
Long Beach, CA.

The American Association of Cancer Research (AACR) meeting, held this year in Chicago, is the premier cancer research convention for basic and translational research. The AACR was the original cancer research organization that pre-dated its sister organization – the American Society of Clinical Oncology (ASCO). The focus of the AACR meeting is basic research and the presentations are often geared toward PhD level scientific discovery. I find this meeting the most informative for it provides insights into therapy options that may not arrive in the clinical arena for many years.

At the meeting, I again observed that the AACR presentations continue to diverge from those at the ASCO meetings. At this year’s meeting, I’m not sure I heard the word “chemotherapy” a single time. That is, all of the alphabet soup combinations that make up the sessions at ASCO are nowhere to be found at the AACR meeting. Instead, targeted agents, genomics, proteomics and the growing field of metabolomics reign supreme.

Several themes seemed to emerge:

That cancer patients are highly unique. In one presentation using phosphoprotein signatures to connect genetic features to phenotypic expression, the investigator conducted 21 phosphoprotein signatures and found 21 different patterns. This, he noted, reflected the "uniqueness" of each individual.

Additional themes included the growing development of meaningfully effective immune therapies. There was evidence of a renewed interest in tissue cultures as the best platform to study drug effects and interactions.

Although virtually every presentation began with the obligatory reference to genomic analysis, almost every one of them then doubled back to metabolism as the principal driver of human cancer.

Among the presentations was a discussion of NextGen genomic analysis, allowing an entire human genome to be sequenced within 24 hours. Mapping genetic elements has enabled investigators at the University of Pennsylvania to explore acute leukemia patients at diagnosis and at the time of recurrence. Based upon mutation analysis, different subsets of patients are observed. Mono and Oligo-clonal populations yield new subpopulations following cytoreductive therapy, wherein a small percentage of tumor cells survive and repopulate as the dominant clone.

The NextGen genomic analysis serves as the basis for new solid tumor studies in which breast biopsies are obtained, before and after therapy with aromatase inhibitors, to examine the clonality of the surviving populations.

William R. Sellers, MD, vice president of Novartis Institutes for BioMedical Research Oncology, described a high throughput robotic technology capable of conducting tens of thousands of combinatorial mixtures to determine drug interactions. What I found most interesting was the observation by this investigator that, “Cell culture remains the most effective means of testing drug combinations.” We agree wholeheartedly.

New classes of lymphoma therapies are in development that target B cell signaling pathways. A prototypic agent being Ibrutinib, the Bruton’s tyrosine kinase inhibitor. Additional developments are examining SYC as a target for small molecule inhibitors.

Our growing understanding of immune regulation is enabling investigators like James Allison to trigger tumor specific immunity. Agents like ipilumimab (AntiCTLA4), combined with other classes of small molecules and/or antibodies directed toward CD28, PD1, and ICOS regulation have the potential to change the landscape in diseases that extend from melanoma to prostate and breast.

The meeting had innumerable sessions and symposia that were geared toward or touched upon the field of metabolomics. As cells jockey for survival they both up- and down-regulate pathways essential to not only energy production but to the biosynthesis of critical metabolic intermediates. The regulation of PKM2 (pyruvate kinase isoenzyme) is now recognized as a pivotal point in the cell’s determination of catabolism (energy production), over anabolism (biosynthesis), with Serine concentrations playing an important regulatory role.

The PI3K pathway is an area of rapidly growing interest as new compounds target this key regulatory protein complex. Both selective and non-selective (pan PI3K) inhibitors are in clinical testing. Paul Workman’s group was honored for their seminal work in this and related areas of drug development. Robert Nagourney, MD, PhD, of Rational Therapeutics, reported his findings on the dual PI3K/mTOR inhibitor BEZ235 (Nagourney, RA et al Proc AACR, 2586, 2012).

The double-edged sword of immune response was deftly covered by Dr. Coussens who described the profound tumor stimulatory effects of T-cell, B-cell and Macrophage infiltration into the tumor microenvironment. Small molecules now in development that down-regulate macrophage signaling may soon show promise alone or in combination with other classes of drugs.

The RAS/RAF pathway becomes ever more complex as we begin to unravel the feedback loops that respond to small molecule inhibitors like Erlotinib or Vemurafanib. Investigators like Dr. Neal Rosen from Memorial Sloan-Kettering Cancer Center have long argued that simple inhibition at one node in a cascade of signaling pathways will absolutely change the dynamic and redirect up and down stream signals that ultimately overcome inhibition. Strategies to control these “resistance” mechanisms are being developed. Once again we find that simple genomic analyses underestimate the complexity of human systems.

Among the regulatory topics at this year’s meeting was a special symposium on the development and testing of multiple novel (non-FDA approved) compounds in the clinical trial setting. There will need to be a new level of cooperation and communication forged between academia, regulatory entities and the pharmaceutical industry if we are to move this process forward. I am encouraged by the early evidence that all three are recognizing and responding to that reality.

The themes of this year’s meeting included:

1. A renewed focus on the biochemistry of metabolism

2. Clear progress in field of tumor immunology

3. The growing recognition that human tumors exist as microenvironments and not isolated single cells.

We are particularly gratified by the last point.

Our EVA/PCD (functional profiling) focus on human tumor aggregates (microspheroids) isolated directly from patients as the most accurate models for chemotherapy selection and drug discovery appears to be gaining support.

Much like genomics aims to unravel the structure of the genome, metabolomics focuses on understanding the many small molecule metabolites that result from a cell’s metabolic processes.

There are an estimated 5,000 - 20,000 endogenous human metabolites, and analysing their production gives an accurate picture of the physiology of a cell at a given moment in time. Whereas the cell’s genotype can predict its physiology to a limited extent, metabolomics also takes phenotype – and therefore environmental conditions – into account, allowing a more precise measure of actual cell physiology.

For research, the study of metabolomics provides the means to measure the effects of a variety of stimuli on individual cells, tissues, and bodily fluids.

By studying how their metabolic profiles change with the introduction of chemicals or the expression of known genes, for example, researchers can more effectively study the immediate impact of disease, nutrition, pharmaceutical treatment, and genetic modifications while using a systems biology approach.
gdpawel is offline   Reply With Quote