View Single Post
Old 01-04-2011, 07:42 AM   #2
gdpawel
Senior Member
 
gdpawel's Avatar
 
Join Date: Aug 2006
Location: Pennsylvania
Posts: 1,080
Re: Circulating tumor cells may be promising alternative for tumor biopsies

CTC technology has great potential - for drug selection - ten or twenty years down the road, and they should continue to try and make strides. However, there is a problem with growing or manipulating tumor cells in any way. When looking for cell-death-related events, which mirror the effect of drugs on living tumors, cells are generally not grown or amplified in any way. The object is occurrence of programmed cell death in cells that come into contact with therapeutic agents.

How do you aggregate a sufficient number of cancer cells to make accurate determinations. Detectable tumor cells in the peripheral blood are present only in extremely small numbers. This precludes allowing a sufficient number of cells to incubate for a few days in the presence of chemotherapeutic agents. Analysis of a relatively small number of isolated cancer cells cannot yield the same quality information as subjecting living cells to chemotherapeutic agents, begging the question of whether or not it can accurately predict which drugs will work and which will not.

CTCs are free-floating cancer cells that can remain in isolation from a tumor for over twenty years. What is the relationship of such long-lasting cells to the tumor cells that need to be attacked through tested substances?

Then there is the question of heterogeneity. Tumors in the body are genetically variable. What is the relationship between CTCs and primary tumors or their already established metastases? It has already been established that the gene expression profile of a metastatic lesion can be different compared to that of the primary. The status of the marker Her2/neu in CTCs sometimes differs from that of the original primary tumor, which would point to different prescriptions for Herceptin.

The number of cells discovered in the CTC technique has turned out to be a good prognosticator of how well empiric treatments are working, but less certain in the ability to use it for drug selection. The level of documentation of the sensitivity and specificity of the drug recommendations that are generated by this procedure has never been the subject of a single peer-reviewed article.

The "problem" is in isolating and analyzing single cancer cells. The supposition is that common cancers can be detected and cured through analysis at a genetic level of a small number of cells or even a single wayward cell.

Genetic or IHC testing examines dead tissue that is preserved in paraffin or formalin. How is that going to be predictive to the behavior of living cells in spontaneously formed colonies or microspheres? Can it describe the complex behavior of living cancer cells in response to the injury they receive from different forms of chemotherapy? There is a big difference between living and dead tissue.

Some molecular tests (like Caris) do utilize living cells, but generally of individual cancer cells in suspension, sometimes derived from tumors and sometimes derived from CTCs. Don't forget, this was tried with the human clonogenic assay, which had been discredited long ago.
gdpawel is offline   Reply With Quote