View Single Post
Old 12-09-2007, 03:11 PM   #176
Andrea Barnett Budin
Senior Member
 
Andrea Barnett Budin's Avatar
 
Join Date: Oct 2005
Location: LAND OF YES! w/home in Boca Raton, Florida Orig from L.I., N.Y. Ever hovering IN THE NOW...
Posts: 1,904
Exclamation Thought This Was Worth Reiterating. Thanks Rb, As Always!



What are omega 3 fatty acids? THIS TOPIC IS SO IMPORTANT TO ALL OF US -- WE MUST TRY TO *INGEST* AS MUCH AS WE CAN OF THIS INFORMATION. Thought it was worth printing for us to easily access...


You've probably been hearing about omega 3 fatty acids in recent years. The reason? A growing body of scientific research indicates that these healthy fats help prevent a wide range of medical problems, including cardiovascular disease, depression, asthma, and rheumatoid arthritis.
Unlike the saturated fats found in butter and lard, omega 3 fatty acids are polyunsaturated. In chemistry class, the terms "saturated" and "polyunsaturated" refer to the number of hydrogen atoms that are attached to the carbon chain of the fatty acid. In the kitchen, these terms take on a far more practical meaning.
Polyunsaturated fats, unlike saturated fats, are liquid at room temperature and remain liquid when refrigerated or frozen. Monounsaturated fats, found in olive oil, are liquid at room temperature, but harden when refrigerated. When eaten in appropriate amounts, each type of fat can contribute to health. However, the importance of omega 3 fatty acids in health promotion and disease prevention cannot be overstated.
The three most nutritionally important omega 3 fatty acids are alpha-linolenic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
Alpha-linolenic acid is one of two fatty acids traditionally classified as "essential." The other fatty acid traditionally viewed as essential is an omega 6 fat called linoleic acid. These fatty acids have traditionally been classified as "essential" because the body is unable to manufacture them on its own and because they play a fundamental role in several physiological functions. As a result, we must be sure our diet contains sufficient amounts of both alpha-linolenic acid and linoleic acid.
DIETARY SOURCES of alpha-linolenic acid include flaxseeds, walnuts, hemp seeds, soybeans and some dark green leafy vegetables. Linoleic acid is found in high concentrations in corn oil, safflower oil, sunflower oil, and canola oil. Most people consume a much higher amount of linoleic acid than alpha-linolenic acid, which has important health consequences.
The body converts alpha-linolenic acid into two important omega 3 fats, eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). These fats can also be derived directly from certain foods, most notably cold-water fish including salmon, tuna, halibut, and herring. In addition, certain types of algae contain DHA. EPA is believed to play a role in the prevention of cardiovascular disease, while DHA is the necessary for proper brain and nerve development. How it Functions
What are the functions of omega 3 fatty acids?

Every cell in our body is surrounded by a cell membrane composed mainly of fatty acids. The cell membrane allows the proper amounts of necessary nutrients to enter the cell, and ensures that waste products are quickly removed from the cell. To perform these functions optimally, however, the cell membrane must maintain its integrity and fluidity. Cells without a healthy membrane lose their ability to hold water and vital nutrients. They also lose their ability to communicate with other cells. Researchers believe that loss of cell to cell communication is one of the physiological events that leads to growth of cancerous tumors.

Because cell membranes are made up of fat, the integrity and fluidity of our cell membranes is determined in large part by the type of fat we eat. Remember that saturated fats are solid at room temperature, while omega 3 fats are liquid at room temperature. Researchers believe that diets containing large amounts of saturated or hydrogenated fats produce cell membranes that are hard and lack fluidity. On the other hand, diets rich in omega 3 fats produce cell membranes with a high degree of fluidity.
In addition, recent in vitro (test tube) evidence suggests when omega 3 fatty acids are incorporated into cell membranes they may help to protect against cancer, notably of the breast. They are suggested to promote breast cancer cell apoptosis via several mechanisms including: inhibiting a pro-inflammatory enzyme called cyclooxygenase 2 (COX 2), which promotes breast cancer; activating a type of receptor in cell membranes called peroxisome proliferator-activated receptor (PPAR)-ã, which can shut down proliferative activity in a variety of cells including breast cells; and, increasing the expression of BRCA1 and BRCA2, tumor suppressor genes that, when functioning normally, help repair damage to DNA, thus helping to prevent cancer development.
Animal and test tube studies published in the November 2005 issue of the International Journal of Cancer suggest yet another way in which the omega-3 fatty acids found in cold water fish-docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)-help protect against breast cancer development.
All dietary fatty acids are incorporated into cell membranes, and the type of fatty acids dictates how a cell responds and grows. Researchers found that omega-3 fatty acids affect cell growth by activating an enzyme called sphingomyelinase, which then generates the release of ceramide, a compound that induces the expression of the human tumor suppressor gene p21, which ultimately causes cancer cell death. In the animal experiments, mice were fed diets rich in either omega-3 (fish oil) or omega-6 (corn oil) fatty acids after which breast cancer cells were implanted. Three weeks later, tumor volume and weight was significantly lower in mice on the omega-3 rich diet. In the lab culture experiments, when cells were treated with DHA or EPA, sphingomyelinase activity increased by 30-40%, and breast cancer cell growth dropped 20-25%.

Omega 3 fats also play an important role in the production of powerful hormone-like substances called prostaglandins. Prostaglandins help regulate many important physiological functions including blood pressure, blood clotting, nerve transmission, the inflammatory and allergic responses, the functions of the kidneys and gastrointestinal tract, and the production of other hormones.

In essence, all prostaglandins perform essential physiological functions. However, depending on the type of fat in the diet, certain types of prostaglandins may be produced in large quantities, while others may not be produced at all. This can set up an imbalance throughout the body that can lead to disease.
For example, EPA and DHA serve as direct precursors for series 3 prostaglandins, which have been called "good" or "beneficial" because they reduce platelet aggregation, reduce inflammation and improve blood flow. The role of EPA and DHA in the prevention of cardiovascular disease can be explained in large part by the ability of these fats to increase the production of favorable prostaglandins.
The omega 6 fats serve as precursors for series 1 and series 2 prostaglandins. Like the series 3 prostaglandins produced from omega 3 fats, series 1 prostaglandins are believed to be beneficial. On the other hand, series 2 prostaglandins are usually considered to be "bad" or "unhealthy," since these prostaglandins promote an inflammatory response and increase platelet aggregation. As a result, it is important to ensure proper balance of omega 3 and omega 6 fats in the diet. EPA Directly Anti-Inflammatory... A recently identified lipid (fat) product our bodies make from EPA, called resolvins, helps explain how this omega-3 fat provides anti-inflammatory effects on our joints and improves blood flow.
Resolvins, which have been shown to reduce inflammation in animal studies, are made from EPA by our cellular enzymes, and work by inhibiting the production and regulating the migration of inflammatory cells and chemicals to sites of inflammation. Unlike anti-inflammatory drugs, such as aspirin, ibuprofen and the COX-2 inhibitors, the resolvins our bodies produce from EPA do not have negative side effects on our gastrointestinal or cardiovascular systems.

Deficiency Symptoms... What are deficiency symptoms for omega 3 fatty acids?

Recent statistics indicate that nearly 99% of people in the United States do not eat enough omega 3 fatty acids. However, the symptoms of omega 3 fatty acid deficiency are very vague, and can often be attributed to some other health conditions or nutrient deficiencies.
Consequently, few people (or their physicians, for that matter) realize that they are not consuming enough omega 3 fatty acids. The symptoms of omega 3 fatty acid deficiency include fatigue, dry and/or itchy skin, brittle hair and nails, constipation, frequent colds, depression, poor concentration, lack of physical endurance, and/or joint pain. Individuals who have disorders involving bleeding, who bruise very easily, or who are taking blood thinners should consult with a medical practitioner before taking supplemental omega 3 fatty acids.

Polyunsaturated oils, including the omega 3 fats, are extremely susceptible to damage from heat, light, and oxygen. When exposed to these elements for too long, the fatty acids in the oil become oxidized, a scientific term that simply means that the oil becomes rancid.
Rancidity not only alters the flavor and smell of the oil, but it also diminishes the nutritional value. More importantly, the oxidation of fatty acids produces free radicals, which are believed to play a role in the development of cancer and other degenerative diseases.
As a result, oils rich in polyunsaturated fatty acids should be stored in dark glass, tightly closed containers in the refrigerator or freezer. In addition, these oils should never be heated on the stove. So, instead of sautéing your vegetables in flaxseed or walnut oil, make a salad dressing using these oils.
To increase the activity of your desaturase enzymes, be sure that your diet includes a sufficient amount of vitamin B6, vitamin B3, vitamin C, magnesium and zinc. In addition, limit your intake of saturated fat and partially hydrogenated fat, as these fats are known to decrease the activity of delta-6 desaturase. Also, to be on the safe side, consider including a direct source of EPA and DHA if your diet, such as wild-caught salmon, halibut, or tuna.
Omega 3 fatty acids may play a role in the prevention and/or treatment of the following health conditions:
  • Alzheimer's disease
  • Asthma
  • Attention deficit hyperactivity disorder (ADHD)
  • Bipolar disorder
  • Cancer
  • Cardiovascular disease
  • Depression
  • Diabetes
  • Eczema
  • High blood pressure
  • Huntington's disease
  • Lupus
  • Migraine headaches
  • Multiple sclerosis
  • Obesity
  • Osteoarthritis
  • Osteoporosis
  • Psoriasis
  • Rheumatoid arthritis
Salmon, flax seeds and walnuts are excellent sources of omega 3 fatty acids. Very good sources of these healthy fats include scallops, cauliflower, cabbage, cloves and mustard seeds. Good sources of these fats include halibut, shrimp, cod, tuna, soybeans, tofu, kale, collard greens, and Brussels sprouts. What are current public health recommendations for omega 3 fatty acids?

In 2002, the Institute of Medicine at the National Academy of Sciences issued Adequate Intake (AI) levels for linolenic acid, the initial building block for all omega 3 fatty acids found in the body. For male teenagers and adult men, 1.6 grams per day were recommended, For female teenagers and adult women, the recommended amount was 1.1 grams per day. These guidelines do not seem as well-matched to the existing health research on omega 3 fatty acids as guidelines issued by the Workshop on the Essentiality of and Recommended Dietary Intakes (RDI) for Omega-6 and Omega-3 Fatty Acids in 1999 sponsored by the National Institutes of Health (NIH). This panel of experts recommended that people consume at least 2% of their total daily calories as omega-3 fats. To meet this recommendation, a person consuming 2000 calories per day should eat sufficient omega-3-rich foods to provide at least 4 grams of omega-3 fatty acids.
This goal can be easily met by adding just two foods to your diet: flaxseeds and wild-caught salmon. Two tablespoons of flaxseeds contain 3.5 grams of omega 3 fats, while a 4 ounce piece of salmon contains 1.5 grams of omega 3 fats.
Vegans and vegetarians relying on ALA as their only source of omega-3 fatty acids should increase their consumption of ALA-rich foods accordingly to ensure sufficient production its important derivatives, EPA and DHA.

Personally, though I try to eat right, according to the info above, and allowing for my IBS issue (since Taxotere and I met up) -- I rely on supplements to keep me at healthy peak. We must each do the best we can...Andi


__________________
Andi BB
'95 post-meno dx Invasive LOBULAR w/9cm tumor! YIKES + 2/21 nodes. Clear mammo 10 mnths earlier. Mastec/tram flap reconst/PORT/8 mnths chemo (4Adria/8CMF). Borderline ER/PR. Tamoxifen 2 yrs. Felt BLESSED. I could walk and talk, feed and bathe myself! I KNEW I would survive...

'98 -- multiple mets to liver. HER2+ 80%. ER/PR- Raging, highly aggressive tumors spreading fast. New PORT. 9 mnths Taxotere Fought fire w/fire! Pronounced in cautious remission 5/99. Taxotere weekly for 6 wks, 2 wks off -- for 9 mnths. TALK ABOUT GRUELING! (I believe they've altered that protocol since those days -- sure hope so!!)
+ good old Vit H wkly for 1st 3 yrs, then triple dosage ev 3 wks for 7 yrs more... The "easy" chemo, right?! Not a walk in the park, but not a freight train coming at 'ya either...

Added Herceptin Nov '98 (6 wks after FDA fast-tracked it for met bc). Stayed w/Vit H till July '08! Now I AM FREE! Humbly and eternally grateful for this life-saving drug! NED since '99 and planning on keeping it that way. To hell w/poor prognosis and nasty stats! STOPPED VIT H JULY '08...! REMAIN STABLE... Eternally grateful...Yes is a world & in this world of yes live (skillfully curled) all worlds ... (e e cummings) EVERY DAY I BEAT MY PREVIOUS RECORD FOR # OF CONSECUTIVE DAYS I'VE STAYED ALIVE. Smile KNOWING you too can be a miracle. Up to me and God now...
Andrea Barnett Budin is offline   Reply With Quote