View Single Post
Old 05-31-2009, 11:40 AM   #5
Rich66
Senior Member
 
Rich66's Avatar
 
Join Date: Feb 2008
Location: South East Wisconsin
Posts: 3,431
Looks like Tranilast might kill cancer stem cells:


1: Anticancer Drugs. 2009 Jun;20(5):334-45. Links
Tranilast inhibits the growth and metastasis of mammary carcinoma.

Chakrabarti R, Subramaniam V, Abdalla S, Jothy S, Prud'homme GJ.
Department of Laboratory Medicine and Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
Tranilast (N-[3,4-dimethoxycinnamonyl]-anthranilic acid) is a drug of low toxicity that is orally administered, and has been used clinically in Japan as an antiallergic and antifibrotic agent. Its antifibrotic effect is thought to depend on the inhibition of transforming growth factor-beta (TGF-beta). It has also been shown to exert antitumor effects, but its mode of action is unclear. Here, we explored the antitumor effects of tranilast in vitro and in vivo. Tranilast inhibited the proliferation of several tumor cell lines including mouse mammary carcinoma (4T1), rat mammary carcinoma stem cell (LA7), and human breast carcinoma (MDA-MB-231 and MCF-7). Tranilast blocked cell-cycle progression in vitro. In the highly metastatic 4T1 cell line, tranilast inhibited phospho-Smad2 generation, consistent with a blockade of TGF-beta signaling. It also inhibited the activation of MAP kinases (extracellularly regulated kinase 1 and 2 and JNK), which have been linked to TGF-beta-dependent epithelial-to-mesenchymal transition and, indeed, it blocked epithelial-to-mesenchymal transition. Although tranilast only partially inhibited TGF-beta production by 4T1 tumor cells, it potently inhibited the production of TGF-beta, interferon-gamma, IL-6, IL-10, and IL-17 by lymphoid cells, suggesting a general anti-inflammatory activity. In vivo, female BALB/c mice were inoculated with syngeneic 4T1 cells in mammary fat pads and treated with tranilast by gavage. Tranilast reduced (>50%) the growth of the primary tumor. However, its effects on metastasis were more striking, with more than 90% reduction of metastases in the lungs and no metastasis in the liver. Thus, tranilast has potential activity as an antimetastatic agent in breast cancer.

Tranilast suppresses prostate cancer growth and osteoclast differentiation in vivo and in vitro.

Sato S, Takahashi S, Asamoto M, Naiki T, Naiki-Ito A, Asai K, Shirai T.
Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
BACKGROUND: In bone metastatic sites, prostate cancer cells proliferate on interacting with osteoclasts. Tranilast, which is used for an antiallergic drug, has been shown to inhibit growth of several cancers and stromal cells. The present study was conducted to assess suppressive effects of Tranilast on prostate cancer growth and osteoclast differentiation in vivo and in vitro. METHODS: In vivo, rat prostate cancer tissue was transplanted onto cranial bones of F344 rats and Tranilast was given for 9 days at doses of 0, 200, or 400 mg/kg/day. In vitro, human prostate cancer cell lines, LNCaP, PC3, and DU145, the rat prostate cancer cell line, PLS-10, and rat bone marrow cells were similarly treated with the agent. RESULTS: In vivo, tumor volumes were significantly decreased in the high dose group. While cell proliferation did not appear to be affected, apoptosis was induced and tumor necrosis was apparent. Cranial bone defects were decreased in the high dose group. In vitro, cell proliferation rates of all four cell lines were reduced by Tranilast and increased apoptosis was observed in LNCaP and PLS-10. In addition, Tranilast significantly reduced osteoclast differentiation of rat bone marrow cells. Western blot analysis of PLS-10 and LNCaP revealed that phospho-GSK3beta was up-regulated and phospho-Akt was down-regulated. CONCLUSIONS: Tranilast here suppressed rat prostate cancer growth and osteoclast differentiation. Growth of human prostate cancer cells was also inhibited. Thus, this agent deserves consideration as a candidate for conventional therapy of bone metastatic prostate cancer. Prostate (c) 2009 Wiley-Liss, Inc.
PMID: 19790239 [PubMed - as supplied by publisher]
Rich66 is offline   Reply With Quote