View Single Post
Old 10-16-2013, 11:31 AM   #1
'lizbeth
Senior Member
 
'lizbeth's Avatar
 
Join Date: Apr 2008
Location: Sunny San Diego
Posts: 2,214
Post Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor

Mandamoo had expressed a wish to enroll in a Pan-HER trial. Fingers crossed that these upcoming treatments will be the miracle treatment we hope for in resistant cancers!

Mol Cancer Ther. 2012 Sep;11(9):1978-87. doi: 10.1158/1535-7163.MCT-11-0730. Epub 2012 Jul 3.
Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib.

http://www.ncbi.nlm.nih.gov/pubmed/22761403


Kalous O, Conklin D, Desai AJ, O'Brien NA, Ginther C, Anderson L, Cohen DJ, Britten CD, Taylor I, Christensen JG, Slamon DJ, Finn RS.
Source

Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

Abstract

The human EGF (HER) family of receptors has been pursued as therapeutic targets in breast cancer and other malignancies. Trastuzumab and lapatinib are standard treatments for HER2-amplified breast cancer, but a significant number of patients do not respond or develop resistance to these drugs. Here we evaluate the in vitro activity of dacomitinib (PF-00299804), an irreversible small molecule pan-HER inhibitor, in a large panel of human breast cancer cell lines with variable expression of the HER family receptors and ligands, and with variable sensitivity to trastuzumab and lapatinib. Forty-seven human breast cancer and immortalized breast epithelial lines representing the known molecular subgroups of breast cancer were treated with dacomitinib to determine IC(50) values. HER2-amplified lines were far more likely to respond to dacomitinib than nonamplified lines (RR, 3.39; P < 0.0001). Furthermore, HER2 mRNA and protein expression were quantitatively associated with response. Dacomitinib reduced the phosphorylation of HER2, EGFR, HER4, AKT, and ERK in the majority of sensitive lines. Dacomitinib exerted its antiproliferative effect through a combined G(0)-G(1) arrest and an induction of apoptosis. Dacomitinib inhibited growth in several HER2-amplified lines with de novo and acquired resistance to trastuzumab. Dacomitinib maintained a high activity in lines with acquired resistance to lapatinib. This study identifies HER2-amplified breast cancer lines as most sensitive to the antiproliferative effect of dacomitinib and provides a strong rationale for its clinical testing in HER2-amplified breast cancers resistant to trastuzumab and lapatinib.
'lizbeth is offline   Reply With Quote