View Single Post
Old 09-08-2009, 08:45 PM   #2
gdpawel
Senior Member
 
gdpawel's Avatar
 
Join Date: Aug 2006
Location: Pennsylvania
Posts: 1,080
Who Needs Taxol?

In the last decade, the incidence of central nervous system (CNS) metastasis has increased. The very first reference I found of this was a NCI observational study in 1995 that reported experience in their clinic where recurrent systemic disease occurred in all patients for which they received dose-intense Paclitaxel (Taxol) therapy. Brain metastasis was the only site of disease recurrence. The cerebellum was involved in two out of three patients, presenting with headache, dizziness, unsteady gait, nausea and vomiting (all the things that happened to my wife in 1998, after her adjunct Taxol treatment in 1997).

This is what led me to research this further and found out about the rarity of ovarian cancer cells metastasizing to the brain. Ovarian cancer uncommonly involves the nervous system. Brain metastasis was a "rare" complication of ovarian cancer with only 67 well-documented cases in medical literature, until 1994. A multi-institutional study of 4027 ovarian cancer patients over 30 years identified only 32 cases while an autopsy study of ovarian cancer reported an incidence of 0.9%. Even more "rare" is the occurrance of Carcinomatous Meningitis. Until 1994, there have been only 14 cases reported. This presentation is similar to metastases from other solid tumors (breast, lung). (1)

In 2002, I came across a study by Christos Kosmas, M.D., consultant medical oncologist, Department of Medicine and Medical Oncology Unit at Helena-Venizelou Hospital, Athens, Greece entitled, "Carcinomatous Meningitis: Taxane-Induced," which found what is called "dissemination after taxane-based (Taxol) chemotherapy." The study conclusions stated that Carcinomatous Meningitis (a CNS metastasis) after a major response to front-line taxane-based regimens represents a grave disease manifestation and its incidence appears increased when compared retrospectively to non-taxane-treated patients. (2)

A commentary by Dr. Lawrence N. Shulman, Vice Chair for Clinical Services and Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, in the September, 2002 issue of The American Journal of Oncology Review, describes the complete lack of progress in the chemotherapeutic treatment of metastatic breast cancer since 1970. Dr. Shulman noted that a retrospective comparision of a well-characterized "standard-dose" database with a less well-characterized "high-dose" database suggested that there was increased early mortality for "high-dose" therapy. (3)

An editorial by Drs. V. Valero and G.N. Hortobagyi in the March 15, 2003 issue of the Journal of Clinical Oncology, reviewed all of the large, prospective, randomized trials published comparing taxane-based chemotherapy regimens. They conclude that none of these regimens have increased either complete response rates or overall survival, with median survivals remaining at two years or less, or precisely the same results which were being obtained over thirty years ago. (4)

In 2004, as reported at the 27th Annual San Antonio Breast Cancer Symposium, using a technique that quantifies circulating tumor cells, German investigators from Friedrich-Schiller University in Jena, have shown that neoadjuvant chemotherapy with paclitaxel (taxol) causes a massive release of cells into the circulation, while at the same time reducing the size of the tumor. The finding could help explain the fact that complete pathologic responses do not correlate well with improvements in survival.

In the study, according to Katharina Pachmann, M.D., professor of experimental oncology and hematology, breast cancer patients undergoing neoadjuvant chemotherapy gave blood samples in which epithelial antigen-positive cells were isolated. Such cells are detected in most breast cancer patients but are rarely found in normal subjects. The investigators measured the levels of cirulating tumor cells before and during primary chemotherapy with several different cytotoxic agents.

Paclitaxel (taxol) produces the greatest degree of tumor shrinkage but also the greatest release of circulating tumor cells. In three different paclitaxel-containing regimens, circulating cell numbers massively increased, whereas tumor size decreased. These cells remained in the circulation for at least five months after surgery.

The tumor shrinks, but more cells are found in the circulation. This corresponds with a high pathologic complete response during paclitaxel treatment, but in the end, this is not reflected in improved survival. These cells are alive in the circulation. What this study has shown, so far, that in three different paclitaxel (taxol) containing regimens, as the tumor collapses (a clinical response, not cure), it produces the greatest release of circulating tumor cells. The study has not looked at any other combination regimens. (5)

The results of these kinds of study are coming out slowly and quietly (now that Taxol is off-patent) and indicate that taxol containing regimens didn't prolong survival over other more conventional and less expensive cytotoxic drugs. Even before the advent of the CellSearch technique, it had been observed in various "cell death" assays, that there was an increase in the number of metabolic activity of mitochondria of the surviving cells from taxane therapy, even in cases where the majority of the cells are being killed by taxanes. It may indeed give clincial response (tumor shrinkage), sometimes impressive, however, these are mostly short-lived and relapses after a response to taxanes (Taxol) are often dramatic. (6)

With these cells being alive in the circulation, it may mean that a patient with invasive breast cancer without lymph node involvement (where systemic treatment "may" benefit), or a patient with invasive breast cancer that involves lymph nodes (where systemic treatment is "usually" recommended), would need additional (anti-estrogen) treatment, such as Tamoxifen (it may be given alone or in addition to chemotherapy, if given).

It has been shown that Tamoxifen treatment will reduce circulating tumor cells in some patients, but not all. So they develop a drug called Herceptin. Why? It has been shown that Herceptin treatment will reduce circulating tumor cells in patients with HER2-negative tumors, but less pronounced in HER2-positive tumors.

Does Herceptin really work on these circulating tumor cells? A study from the Dana Farber Cancer Institute identified central nervous system metastases in women who receive trastuzumab-based (Herceptin) therapy for metastatic breast carcinoma. Central nervous system disease is defined as one or more brain metastases or leptomeningeal carcinomatosis (carcinomatous meningitis).

Central nervous system metastases was identified in 34% of patients at a median of 16 months after diagnosis of metastatic breast cancer and 6 months from the beginning of Herceptin treatment. Patients receiving Herceptin as first-line therapy for metastatic disease frequently developd brain metastases while responding to or stable on Herceptin. (7)

In 2006, another report that CNS relapses are common among breast cancer patients treated with a taxane-based chemotherapy regimen. Central Nervous System Relapse in Patients With Breast Cancer Is Associated With Advanced Stages, With CK-19 mRNA-positive Circulating Occult Tumor Cells and With Her2/neu-positive tumors.

Last edited by gdpawel; 07-12-2011 at 04:34 PM.. Reason: replaced
gdpawel is offline   Reply With Quote