View Single Post
Old 04-22-2011, 11:06 AM   #15
Rich66
Senior Member
 
Rich66's Avatar
 
Join Date: Feb 2008
Location: South East Wisconsin
Posts: 3,431
Re: No need to avoid soy - new research

J Biol Chem. 2011 Apr 14. [Epub ahead of print]
Genistein stimulates MCF-7 [ER+] breast cancer cell growth by inducing acid ceramidase (ASAH1) gene expression.

FREE TEXT

Lucki NC, Sewer MB.
Source

Georgia Institute of Technology, United States;

Abstract

Sphingolipid metabolites, such as ceramide (cer), sphingosine (SPH), and sphingosine-1-phosphate (S1P), contribute to multiple aspects of carcinogenesis including cell proliferation, migration, angiogenesis, and tumor resistance. The cellular balance between cer and S1P levels, for example, is an important determinant of cell fate, with the former inducing apoptosis and the later mitogenesis. Acid ceramidase (ASAH1) plays a pivotal role in regulating the intracellular concentration of these two metabolites by hydrolyzing cer into SPH, which is rapidly phosphorylated to form S1P. Genistein is a phytoestrogen isoflavone that exerts agonist and antagonist effects on the proliferation of estrogen-dependent MCF-7 cells in a dose-dependent manner, primarily as a ligand for estrogen receptors (ER). Genistein can also activate signaling through GPR30, a G-protein coupled cell surface receptor. Based on the relationship between bioactive sphingolipids and tumorigenesis, we sought to determine the effect of genistein on ASAH1 transcription in MCF-7 breast cancer cells. We show herein that nanomolar concentrations of genistein induce ASAH1 transcription through a GPR30-dependent, pertussis-toxin sensitive pathway that requires the activation of c-Src and extracellular-signal regulated kinase 1/2 (ERK1/2). Activation of this pathway promotes histone acetylation and recruitment of phospho-ERα and Sp1 to the ASAH1 promoter, ultimately culminating in increased ceramidase activity. Finally, we show that genistein stimulates cyclin B2 expression and cell proliferation in an ASAH1-dependent manner. Collectively, these data identify a mechanism through which genistein promotes sphingolipid metabolism and support a role for ASAH1 in breast cancer cell growth.



Nutr Res. 2011 Feb;31(2):139-46.
Induction of apoptotic cell death by phytoestrogens by up-regulating the levels of phospho-p53 and p21 in normal and malignant estrogen receptor α-negative breast cells.

LINK


Seo HS, Ju JH, Jang K, Shin I.
Source

Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea.

Abstract

In this study, we investigated the underlying mechanism by which phytoestrogens suppress the growth of normal (MCF-10A) and malignant (MDA-MB-231) estrogen receptor α (ERα)-negative breast cells. We hypothesized that phytoestrogen inhibits the proliferation of ERα-negative breast cancer cells. We found that all tested phytoestrogens (genistein, apigenin, and quercetin) suppressed the growth of both MCF-10A and MDA-MB-231 cells, as revealed by proliferation assays. These results were accompanied by an increase in the sub-G0/G1 apoptotic fractions as well as an increase in the cell population in the G2/M phase in both cell types, as revealed by cell cycle analysis. When we assessed the effect of phytoestrogens on the level of intracellular signaling molecules by Western blot analysis, we found that phytoestrogens increased the level of active p53 (phospho-p53) without changing the p53 level in both MCF-10A and MDA-MB-231 cells. Phytoestrogens also induced an increase in p21, a p53 target gene, and a decrease in either Bcl-xL or cyclin B1 in both cell types. In contrast, the protein levels of phosphatase and tensin homolog, cyclin D1, cell division control protein 2 homolog, phospho-cell division control protein 2 homolog, and p27 were not changed after phytoestrogen treatment. Our data indicate that phytoestrogens induce apoptotic cell death of ERα-negative breast cancer cells via p53-dependent pathway and suggest that phytoestrogens may be promising agents in the treatment and prevention of ERα-negative breast cancer.
Copyright © 2011 Elsevier Inc. All rights reserved.

PMID:21419318 [PubMed - in process]

Seems like a definite risk in ER+ and potentially helpful in ER-...with the caveat that ER status can be mixed within a tumor or changeable over time.
__________________

Mom's treatment history (link)
Rich66 is offline   Reply With Quote